【題目】為支援武漢抗擊新冠肺炎疫情,軍隊(duì)抽組1400名醫(yī)護(hù)人員于2月3日起承擔(dān)武漢火神山專(zhuān)科醫(yī)院醫(yī)療救治任務(wù).此外,從解放軍疾病預(yù)防控制中心、軍事科學(xué)院軍事醫(yī)學(xué)研究院抽取15名專(zhuān)家組成聯(lián)合專(zhuān)家組,指導(dǎo)醫(yī)院疫情防控工作.該醫(yī)院開(kāi)設(shè)了重癥監(jiān)護(hù)病區(qū)(),重癥病區(qū)(),普通病區(qū)()三個(gè)病區(qū).現(xiàn)在將甲乙丙丁4名專(zhuān)家分配到這三個(gè)病區(qū)了解情況,要求每個(gè)專(zhuān)家去一個(gè)病區(qū),每個(gè)病區(qū)都有專(zhuān)家,一個(gè)病區(qū)可以有多個(gè)專(zhuān)家.已知甲不能去重癥監(jiān)護(hù)病區(qū)(),乙不能去重癥病區(qū)(),則一共有__________種分配方式
【答案】17種
【解析】
根據(jù)甲、乙兩人是否在一起分成兩種情況,分別計(jì)算出分配的方法數(shù),然后根據(jù)分類(lèi)加法計(jì)數(shù)原理求得所有的分配方法數(shù).
按照甲乙是否在一起分為兩種情況:①甲乙在一起,則都在病區(qū),則丙丁分配在病區(qū),有兩種.②甲乙不在一起,若甲在,種,若甲在,則乙在,有種,共計(jì)17種.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開(kāi)口為正六邊形ABCDEF,側(cè)棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個(gè)全等的菱形構(gòu)成.瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說(shuō)蜜蜂比人類(lèi)更明白如何用數(shù)學(xué)方法設(shè)計(jì)自己的家園.英國(guó)數(shù)學(xué)家麥克勞林通過(guò)計(jì)算得到∠B′C′D′=109°28′16'.已知一個(gè)房中BB'=5,AB=2,tan54°44′08',則此蜂房的表面積是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,,為四邊形對(duì)角線(xiàn)交點(diǎn),為棱的中點(diǎn),且平面.
(1)證明:平面;
(2)證明:四邊形為矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了實(shí)施“科技下鄉(xiāng),精準(zhǔn)脫貧”戰(zhàn)略,某縣科技特派員帶著,,三個(gè)農(nóng)業(yè)扶貧項(xiàng)目進(jìn)駐某村,對(duì)該村僅有的甲、乙、丙、丁四個(gè)貧困戶(hù)進(jìn)行產(chǎn)業(yè)幫扶.經(jīng)過(guò)前期實(shí)際調(diào)研得知,這四個(gè)貧困戶(hù)選擇,,三個(gè)扶貧項(xiàng)目的意向如下表:
扶貧項(xiàng)目 | |||
貧困戶(hù) | 甲、乙、丙、丁 | 甲、乙、丙 | 丙、丁 |
若每個(gè)貧困戶(hù)只能從自己已登記的選擇意向項(xiàng)目中隨機(jī)選取一項(xiàng),且每個(gè)項(xiàng)目至多有兩個(gè)貧困戶(hù)選擇,則不同的選法種數(shù)有( )
A.24種B.16種C.10種D.8種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,.
(1)求證:;
(2)若,,為的中點(diǎn),求平面將三棱錐分成的兩部分幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn):(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn):.
(1)寫(xiě)出曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若曲線(xiàn)上有一動(dòng)點(diǎn),曲線(xiàn)上有一動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類(lèi)》向題的統(tǒng)計(jì)圖(每個(gè)受訪(fǎng)者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( )
A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問(wèn)卷的受訪(fǎng)者中,選擇“設(shè)置分類(lèi)明確的垃圾桶”的人數(shù)最多
C. 回答該問(wèn)卷的受訪(fǎng)者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問(wèn)卷的受訪(fǎng)者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將1,2,3,……,9這9個(gè)數(shù)全部填入如圖所示的3×3方格內(nèi),每個(gè)格內(nèi)填一個(gè)數(shù),則使得每行中的數(shù)從左至右遞增,每列中的數(shù)從上至下遞減的不同填法共有( )種
A.12B.24C.42D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,若,,且.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)(Ⅰ)中曲線(xiàn)的左、右頂點(diǎn)分別為、,過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),(不與,重合).若直線(xiàn)與直線(xiàn)相交于點(diǎn),試判斷點(diǎn),,是否共線(xiàn),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com