【題目】已知曲線與圓相交于四個(gè)點(diǎn),軸右側(cè),為坐標(biāo)原點(diǎn)。

(1)當(dāng)曲線與圓恰有兩個(gè)公共點(diǎn)時(shí),求

(2)當(dāng)面積最大時(shí),求;

(3)證明:直線與直線相交于定點(diǎn),求求出點(diǎn)的坐標(biāo)。

【答案】(1);(2);(3).

【解析】

(1) 由對(duì)稱知直線與圓相切,從而可利用圓心到直線的距離等于半徑求解;

(2)由,從而得有最值,進(jìn)而可得圓心到直線距離,列方程求解即可;

(3)設(shè),,由直線相交于點(diǎn),得,所以,利用坐標(biāo)表示斜率,由直線與圓聯(lián)立,根據(jù)根與系數(shù)的關(guān)系建立方程求解即可.

(1) 由對(duì)稱知:此時(shí)直線與圓恰相切

設(shè)到直線的距離為,則

所以

(2)由題知,當(dāng)縣僅當(dāng)時(shí)取等號(hào).

設(shè)到直線的距離為,則,所以

(3)由題意:設(shè),,,

結(jié)合圖形由對(duì)稱知:直線與圓有兩個(gè)交點(diǎn)

由韋達(dá)定理得:,

直線相交于點(diǎn),所以,所以

所以

所以,所以定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0)上點(diǎn)T(3,t)到焦點(diǎn)F的距離為4.

(1)求t,p的值;
(2)設(shè)A,B是拋物線上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且 (其中O為坐標(biāo)原點(diǎn)).求證:直線AB過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=xex
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本市某玩具生產(chǎn)公司根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每天生產(chǎn), , 三種玩具共100個(gè),且種玩具至少生產(chǎn)20個(gè),每天生產(chǎn)時(shí)間不超過10小時(shí),已知生產(chǎn)這些玩具每個(gè)所需工時(shí)(分鐘)和所獲利潤如表:

玩具名稱

工時(shí)(分鐘)

5

7

4

利潤(元)

5

6

3

(Ⅰ)用每天生產(chǎn)種玩具個(gè)數(shù)種玩具表示每天的利潤(元);

(Ⅱ)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C:+=1(a>b>0)的短軸兩端點(diǎn)為B1(0,﹣1)、B2(0,1),離心率e=,點(diǎn)P是橢圓C上不在坐標(biāo)軸上的任意一點(diǎn),直線B1P和B2P分別與x軸相交于M,N兩點(diǎn),

(1)求橢圓的方程和的值;

(2)若點(diǎn)坐標(biāo)為(1,0),點(diǎn)的直線與橢圓相交于兩點(diǎn),試求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2+(a+1)x+2ln(x﹣1).
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線2x﹣y+1=0平行,求出這條切線的方程;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)于任意的x∈(1,+∞),都有f(x)<﹣2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有四個(gè)命題:
①函數(shù)y=tan x在每一個(gè)周期內(nèi)都是增函數(shù).
②函數(shù)y=sin(2x+ )的圖象關(guān)于直線x= 對(duì)稱;
③函數(shù)y=tanx的對(duì)稱中心(kπ,0),k∈Z.
④函數(shù)y=sin(2x﹣ )是偶函數(shù).
其中正確結(jié)論個(gè)數(shù)(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx+ ,m∈R
(1)當(dāng)m=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的最小值;
(2)討論函數(shù)g(x)=f′(x)﹣ 零點(diǎn)的個(gè)數(shù);
(3)(理科)若對(duì)任意b>a>0, <1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)時(shí),方程表示的曲線可能是______

②兩條平行直線 ③橢圓 ④雙曲線 ⑤拋物線

查看答案和解析>>

同步練習(xí)冊(cè)答案