【題目】已知函數(shù)()的單調遞減區(qū)間為.
(I)求a的值;
(II)證明:當時,;
(III)若存在,使得當時,恒有,求實數(shù)k的取值范圍.
【答案】(I);(II)證明見解析;(III).
【解析】
(I)由題意知為方程的一個根,求出后注意檢驗一下.
(II)構造,通過研究其單調性,證明即可.
(III)根據(jù)(II),分、、三種情況討論,前兩種情況容易證明不存在滿足條件的值,當時,令,通過研究的導數(shù),進一步研究其單調性,找到值并證明即可.
解:(I)的定義域為.
.
由題意知為方程的一個根.
所以,解得.
當時,,得
的單調遞減區(qū)間為,符合題意.
(II)設,
則.
當時,,所以在上單調遞增.
所以當時,,即.
(III)當時,由(II)知不存在符合條件的m.
當時,對于,,故不存在符合條件的m.
當時,令,
則.
令,得,.
因為當時,,所以在上單調遞減,,
即,此時取即可.
綜上所述,k的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】拋物線的焦點為F,P為其上一動點,設直線l與拋物線C相交于A,B兩點,點下列結論正確的是( )
A.|PM| +|PF|的最小值為3
B.拋物線C上的動點到點的距離最小值為3
C.存在直線l,使得A,B兩點關于對稱
D.若過A、B的拋物線的兩條切線交準線于點T,則A、B兩點的縱坐標之和最小值為2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了推進分級診療,實現(xiàn)“基層首診、雙向轉診、急慢分治、上下聯(lián)動”的診療模式,某地區(qū)自2016年起全面推行家庭醫(yī)生簽約服務.已知該地區(qū)居民約為2000萬,從1歲到101歲的居民年齡結構的頻率分布直方圖如圖1所示.為了解各年齡段居民簽約家庭醫(yī)生的情況,現(xiàn)調查了1000名年滿18周歲的居民,各年齡段被訪者簽約率如圖2所示.
(1)估計該地區(qū)年齡在71~80歲且已簽約家庭醫(yī)生的居民人數(shù);
(2)若以圖2中年齡在71~80歲居民簽約率作為此地區(qū)該年齡段每個居民簽約家庭醫(yī)生的概率,則從該地區(qū)年齡在71~80歲居民中隨機抽取兩人,求這兩人中恰有1人已簽約家庭醫(yī)生的概率;
(3)據(jù)統(tǒng)計,該地區(qū)被訪者的簽約率約為.為把該地區(qū)年滿18周歲居民的簽約率提高到以上,應著重提高圖2中哪個年齡段的簽約率?并結合數(shù)據(jù)對你的結論作出解釋.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】非典和新冠肺炎兩場疫情告訴我們:應堅決杜絕食用野生動物,提倡文明健康,綠色環(huán)保的生活方式.在我國抗擊新冠肺炎期間,某校開展一次有關病毒的網(wǎng)絡科普講座.高三年級男生60人,女生40人參加.按分層抽樣的方法,在100名同學中選出5人,則男生中選出________人.再從此5人中選出兩名同學作為聯(lián)絡人,則這兩名聯(lián)絡人中男女都有的概率是________.(第1空2分,第2空3分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線交橢圓于兩點,.
(1)若,且點滿足,證明:點不在橢圓上;
(2)若橢圓的左,右焦點分別為,,直線與線段和橢圓的短軸分別交于兩個不同點,,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)函數(shù),討論的單調性;
(2)曲線在點處的切線為,是否存在這樣的點使得直線與曲線也相切,若存在,判斷滿足條件的點的個數(shù),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】.對于n∈N*(n≥2),定義一個如下數(shù)陣:,其中對任意的1≤i≤n,1≤j≤n,當i能整除j時,aij=1;當i不能整除j時,aij=0.設.
(Ⅰ)當n=6時,試寫出數(shù)陣A66并計算;
(Ⅱ)若[x]表示不超過x的最大整數(shù),求證:;
(Ⅲ)若,,求證:g(n)﹣1<f(n)<g(n)+1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花圃為提高某品種花苗質量,開展技術創(chuàng)新活動,在實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80分及以上的花苗為優(yōu)質花苗.
(1)用樣本估計總體,以頻率作為概率,若在兩塊實驗地隨機抽取3株花苗,求所抽取的花苗中優(yōu)質花苗數(shù)的分布列和數(shù)學期望;
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認為優(yōu)質花苗與培育方法有關.
優(yōu)質花苗 | 非優(yōu)質花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內到兩個定點的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標系中,點.設點的軌跡為,下列結論正確的是( )
A. 的方程為
B. 在軸上存在異于的兩定點,使得
C. 當三點不共線時,射線是的平分線
D. 在上存在點,使得
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com