【題目】已知

1)當(dāng)a0時(shí),求fx)的極值;

2)當(dāng)a0時(shí),討論fx)的單調(diào)性;

3)若對任意的a∈2, 3),x1, x2∈[1, 3],恒有(mln3a2ln3|fx1)-fx2|成立,求實(shí)數(shù)m的取值范圍.

【答案】1的極大值為,無極小值;(2當(dāng)時(shí),上是增函數(shù),在上是減函數(shù);當(dāng)時(shí),上是增函數(shù);當(dāng)時(shí),上是增函數(shù),在上是減函數(shù) 3.

【解析】

1)當(dāng)時(shí),

,解得,可知上是增函數(shù),在上是減函數(shù).

的極大值為,無極小值.

當(dāng)時(shí),上是增函數(shù),在上是減函數(shù);

當(dāng)時(shí),上是增函數(shù);

當(dāng)時(shí),上是增函數(shù),在上是減函數(shù)

3)當(dāng)時(shí),由(2)可知上是增函數(shù),

.

對任意的a∈2, 3),x1, x2∈[1, 3]恒成立,

對任意恒成立,

對任意恒成立,

由于當(dāng)時(shí),,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、FAB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm2

1)若廣告商要求包裝盒側(cè)面積Scm)最大,試問x應(yīng)取何值?

2)若廣告商要求包裝盒容積Vcm)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬中,側(cè)棱底面,且,點(diǎn) 的中點(diǎn),連接、.

1)證明:平面;

2)證明:平面.試判斷四面體是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,請說明理由;

3)記陽馬的體積為,四面體的體積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)fx)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;

(2)若a=3,且對任意的x1∈[-1,2],總存在,使gx1)-fx2)=0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租車公司給出的財(cái)務(wù)報(bào)表如下:

年度

項(xiàng)目

2014

1-12月)

2015

1-12月)

2016

1-11月)

接單量(單)

14463272

40125125

60331996

油費(fèi)(元)

214301962

581305364

653214963

平均每單油費(fèi)(元)

14.82

14.49

平均每單里程(公里)

15

15

每公里油耗(元)

0.7

0.7

0.7

有投資者在研究上述報(bào)表時(shí),發(fā)現(xiàn)租車公司有空駛情況,并給出空駛率的計(jì)算公式為.

1)分別計(jì)算2014,2015年該公司的空駛率的值(精確到0.01%);

22016年該公司加強(qiáng)了流程管理,利用租車軟件,降低了空駛率并提高了平均每單里程,核算截止到1130日,空駛率在2015年的基礎(chǔ)上降低了20個(gè)百分點(diǎn),問2016年前11個(gè)月的平均每單油費(fèi)和平均每單里程分別為多少?(分別精確到0.01元和0.01公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)是函數(shù)的一個(gè)極值點(diǎn),試求的單調(diào)區(qū)間;

(2),是否存在實(shí)數(shù)a,使得在區(qū)間上的最大值為4?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)由方程確定,下列結(jié)論正確的是________(請將你認(rèn)為正確的序號都填上)

上的單調(diào)遞減函數(shù);

對于任意,恒成立;

對于任意,關(guān)于的方程都有解;

存在反函數(shù),且對任意,總有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).其中是自然對數(shù)的底數(shù).

1)求函數(shù)在點(diǎn)處的切線方程;

2)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為等差數(shù)列,則使等式能成立的數(shù)列的項(xiàng)數(shù)的最大值為_________;

查看答案和解析>>

同步練習(xí)冊答案