如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長為1的正方形,若A1AB=∠A1AD=600,且A1A=3,則A1C的長為______.
在平行六面體ABCD-A1B1C1D1中,A1AB=∠A1AD=600,∴∠BCC1=∠DCC1=120°,
又∵A1A=3,BC=DC=1,∴
CB
CC1
=
CD
CC1
=|
CD
||
CC1
|cos120°
=-
3
2

∵底面是邊長為1的正方形,∴∠BCD=90°,∴
CB
CD
=|
CB
||
CD
|cos90°
=0.
CA1
=
CB
+
CD
+
CC1

CA1
2
=(
CB
+
CD
+
CC1
)2
=
CB
2
+
CD
2
+
CC1
2
+2
CB
CC1
+2
CD
CC1
+2
CB
CD

=12+12+32+2×(-
3
2
)×2+0
=5.
|
CA1
|=
5

故答案為
5
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點E在BC上,且AE⊥AC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求點B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在如圖所示的多面體中,底面△ABC是邊長為2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.
(Ⅰ)求點A到平面BDE的距離;
(Ⅱ)求二面角B-ED-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖示,在底面為直角梯形的四棱椎P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平行六面體ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,則AC1的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正四面體的四個頂點都在表面積為36π的一個球面上,則這個正四面體的高等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在直角坐標系xOy中,設A(2,2),B(-2,-3),沿y軸把坐標平面折成120°的二面角后,AB的長是(  )
A.
35
B.6C.3
5
D.
53

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

球的半徑為8,經(jīng)過球面上一點作一個平面,使它與經(jīng)過這點的半徑成45°角,則這個平面截球的截面面積為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如下的三個圖中,左面的是一個長方體截去一個角所得多面體的直觀圖,它的主視圖和左視圖在右面畫出(單位:cm).(1)按照給出的尺寸,求該多面體的體積;(2)在所給直觀圖中連結BC′,證明:BC′面EFG.

查看答案和解析>>

同步練習冊答案