在直角坐標系xOy中,設A(2,2),B(-2,-3),沿y軸把坐標平面折成120°的二面角后,AB的長是(  )
A.
35
B.6C.3
5
D.
53
A(2,2),B(-2,-3),作AC垂直x軸,BD垂直x軸,BM平行等于CD,
連接AB,MC,則|CD|=4,|BD|=3,|AC|=2,
∵BD⊥x軸,MC⊥x軸(MCBD),∴∠ACM就是二面角的平面角,即∠ACM=120°
∴|AM|=
9+4-2×2×3cos120°
=
19
,
∵|BM|=4
∴|AB|=
19+16
=
35

故選:A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,用一副直角三角板拼成一直二面角A-BD-C,若其中給定AB=AD=2,∠BCD=90°,∠BDC=60°,
(Ⅰ)求三棱錐A-BCD的體積;
(Ⅱ)求點A到BC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,四棱柱ABCD-A1B1C1D1中,側棱A1A⊥底面ABCD,ABDC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明:B1C1⊥CE;
(2)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為
2
6
.求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長為1的正方形,若A1AB=∠A1AD=600,且A1A=3,則A1C的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,P△ABC所在平面外一點,PA=PB,CB⊥平面PAB,M是PC中點,N是AB上的點,AN=3NB,
(1)求證:MN⊥AB;
(2)當∠PAB=90°,BC=2,AB=4時,求MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直四棱柱ABCD-A1B1C1D1口,ABCD,AD⊥AB,AB=2,AD=
2
,AA1=3,E為CD7一點,DE=1,EC=3
(1)證明:BE⊥平面BB1C1C;
(2)求點B1到平面EA1C1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,是一個正方體的展開圖,如果將它還原為正方體,那么AB,CD,EF,GH這四條線段所在直線是異面直線的有( 。⿲Γ
A.1對B.2對C.3對D.4對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知PA⊥面ABCD,PA=AB=AD=
1
2
CD,∠BAD=∠ADC=90°
(1)在面PCD上找一點M,使BM⊥面PCD;
(2)求由面PBC與面PAD所成角的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過兩條異面直線中的一條且平行于另一條的平面有______個.

查看答案和解析>>

同步練習冊答案