1.在平面直角坐標系中,不等式組$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$所表示的平面區(qū)域的面積是2.

分析 先根據(jù)約束條件畫出可行域,再利用幾何意義求面積,只需求出區(qū)域圖形的面積即可.

解答 解:不等式組$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$表示的可行域如圖,三條直線圍成的三角形,$\left\{\begin{array}{l}{x=1}\\{x+y=1}\end{array}\right.$可得C(1,0),$\left\{\begin{array}{l}{x=1}\\{3x-y+1=0}\end{array}\right.$,可得B(1,4),$\left\{\begin{array}{l}{x+y-1=0}\\{3x-y+1=0}\end{array}\right.$解得A(0,1)
區(qū)域面積為:$\frac{1}{2}$×4×1=2.
故答案為:2

點評 本題考查了二元一次不等式與一次函數(shù)的關系及三角形面積的計算方法,注意運用圖形結合可以更直觀地得解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知直線y=k(x-1)(k>0)與拋物線y2=4x交于A,B兩點,若△AOB的面積為2$\sqrt{2}$,則|AB|=(  )
A.2B.6C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若(2+x)(1-x)6=a0+a1x+a2x2+…+a7x7,則a2+a3=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的外接球的表面積為32π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為2,則其漸近線的方程為y=$±\sqrt{3}x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),過點A(-a,0),B(0,b)的直線的斜率為$\frac{1}{2}$,原點到該直線的距離為$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓的方程;
(2)斜率大于零的直線過D(-1,0)與橢圓交于E,F(xiàn)兩點,若$\overrightarrow{ED}$=2$\overrightarrow{DF}$,求直線EF的方程;
(3)是否存在實數(shù)k,使直線y=kx+2交橢圓于P,Q兩點,且以PQ為直徑的圓過點D(-1,0)?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖所示的四個函數(shù)圖象,在區(qū)間(-∞,0)內(nèi),方程fi(x)=0(i=1,2,3,4)有實數(shù)解的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.把函數(shù)y=sinx的圖象上所有點的橫坐標都縮小到原來的一半,縱坐標保持不變,再把圖象向右平移$\frac{π}{6}$個單位,這是對應于這個圖象的解析式為( 。
A.$y=sin(2x-\frac{π}{3})$B.$y=sin(2x-\frac{π}{6})$C.$y=sin(\frac{x}{2}-\frac{π}{3})$D.$y=sin(\frac{x}{2}-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設常數(shù)a∈R,以方程|x+a|•2x=2013的根的可能個數(shù)為元素的集合A={1,2,3}.

查看答案和解析>>

同步練習冊答案