6.已知:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),過點A(-a,0),B(0,b)的直線的斜率為$\frac{1}{2}$,原點到該直線的距離為$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓的方程;
(2)斜率大于零的直線過D(-1,0)與橢圓交于E,F(xiàn)兩點,若$\overrightarrow{ED}$=2$\overrightarrow{DF}$,求直線EF的方程;
(3)是否存在實數(shù)k,使直線y=kx+2交橢圓于P,Q兩點,且以PQ為直徑的圓過點D(-1,0)?若存在,求出k的值;若不存在,請說明理由.

分析 (1)利用兩點連線的斜率公式及點到直線的距離公式列出橢圓的三個參數(shù)a,b,c的關系,通過解方程求出a,b,c的值,寫出橢圓的方程;
(2)設出直線方程,將直線方程代入橢圓方程,利用根與系數(shù)的關系及已知條件中的向量關系找到有關直線方程中的待定系數(shù)滿足的等式,解方程求出直線的方程.
(3)將條件以PQ為直徑的圓過點D(-1,0)轉化為PD⊥QD,設出直線的方程將直線方程與橢圓方程聯(lián)立,利用向量垂直的充要條件列出等式,求出直線的斜率.

解答 解:(1)由題意可知直線AB的斜率k=$\frac{b-0}{0-a}$=$\frac{a}$=$\frac{1}{2}$,則a=2b,
由△OAB三角形的面積S=$\frac{1}{2}$ab=$\frac{1}{2}$•$\sqrt{{a}^{2}+^{2}}$•$\frac{{2\sqrt{5}}}{5}$,即ab=$\sqrt{{a}^{2}+^{2}}$•$\frac{{2\sqrt{5}}}{5}$,
∴2b2=$\sqrt{5}$b•$\frac{{2\sqrt{5}}}{5}$,解得:b=1,
∴a=2,
∴橢圓的標準方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)設EF:x=my-1(m>0),設E(x1,y1),F(xiàn)(x2,y2),
則$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,整理得(m2+4)y2-2my-3=0,
由韋達定理可知:y1+y2=$\frac{2m}{{m}^{2}+4}$,y1•y2=-$\frac{3}{{m}^{2}+4}$,
∵$\overrightarrow{ED}$=(-1-x1,-y1),$\overrightarrow{DF}$=(-1-x2,-y2),
由$\overrightarrow{ED}$=2$\overrightarrow{DF}$,
∴y1=-2y2
則y1+y2=-y2=$\frac{2m}{{m}^{2}+4}$,y1•y2=-2y22=-$\frac{3}{{m}^{2}+4}$,
∴($\frac{2m}{{m}^{2}+4}$)2=$\frac{3}{2({m}^{2}+4)}$,解得:m=$\frac{2\sqrt{15}}{5}$,m=-$\frac{2\sqrt{15}}{5}$(舍去),(沒舍去扣1分)
直線EF的方程為:x=$\frac{2\sqrt{15}}{5}$y-1,即x-$\frac{2\sqrt{15}}{5}$y+1=0;
(3)由題意可知:設P(x1,y1),Q(x2,y2),
$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,整理得(4k2+1)x2+16kx+12=0(*),
由△=(16k)2-4×12×(4k2+1)>0,解得:k2>$\frac{3}{4}$,
由韋達定理可知:x1+x2=-$\frac{16k}{4{k}^{2}+1}$,x1•x2=$\frac{12}{4{k}^{2}+1}$,
∵PQ為直徑的圓過D(-1,0),
則PD⊥QD,
即(x1+1,y1)•(x2+1,y2)=(x1+1)(x2+1)+y1y2=0,
又y1=kx1+2,y2=kx2+2,
整理得:(k2+1)x1•x2+(2k+1)(x1+x2)+5=$\frac{-16k+17}{4{k}^{2}+1}$=0.
解得:k=$\frac{17}{16}$,滿足△>0,
∴存在$\frac{17}{16}$,滿足題設條件.

點評 本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查韋達定理的運用,考查向量知識的綜合應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-kx(k∈R),g(x)=lnx.
(1)若函數(shù)y=f(x)與y=g(x)的圖象有公共點,求實數(shù)k的取值范圍;
(2)設函數(shù)h(x)=f(x)-g(x),?a,b>0(a≠b),若?c>0,使得h′(c)=$\frac{h(a)-h(b)}{a-b}$,求證:$\sqrt{ab}$<c<$\frac{a+b}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x≤1}\\{{2^x}+ax,x>1}\end{array}}$,若f(f(1))=4a,則實數(shù)a=2,函數(shù)f(x)的單調增區(qū)間為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$(a>0,且a≠1)的值域為(-∞,+∞),則實數(shù)a的取值范圍是( 。
A.(3,+∞)B.(0,$\frac{1}{4}$]C.(1,3)D.[$\frac{1}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在平面直角坐標系中,不等式組$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$所表示的平面區(qū)域的面積是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=loga(1+x)-loga(1-x)(a>0且a≠1).
(1)討論f(x)的奇偶性與單調性;
(2)若不等式|f(x)|<2的解集為{x|-$\frac{1}{2}$<x<$\frac{1}{2}$},求a的值;
(3)求f(x)的反函數(shù)f-1(x);
(4)若f-1(1)=$\frac{1}{3}$,解關于x的不等式f-1(x)<m(m∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.寫出$\frac{{2}^{2}-1}{1}$,$\frac{{3}^{2}-2}{3}$,$\frac{{4}^{2}-3}{5}$,$\frac{{5}^{2}-4}{7}$,…的通項公式:$\frac{(n+1)^{2}-n}{2n-1}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列四個圖形中,能表示函數(shù)y=f(x)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+mx,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在y=f(x)圖象上,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}通項公式為bn=$\frac{(2n+1)(-1)^{n-1}}{{S}_{n}}$,前n項和為Tn,求Tn,并判定Tn的單調性.

查看答案和解析>>

同步練習冊答案