A. | 8 | B. | 9 | C. | 10 | D. | 11 |
分析 根據(jù)題意,得出圓C的圓心C與半徑r,設(shè)P(a,b)在圓C上,則$\overrightarrow{AP}$=(a,b+m),$\overrightarrow{BP}$=(a,b-m);利用∠APB=90°,求出m2,根據(jù)其幾何意義,得出m的最小值.
解答 解:∵圓C:(x-6)2+(y-8)2=1,
∴圓心C(6,8),半徑r=1;
設(shè)點(diǎn)P(a,b)在圓C上,則$\overrightarrow{AP}$=(a,b+m),$\overrightarrow{BP}$=(a,b-m);
∵∠APB=90°,
∴$\overrightarrow{AP}•\overrightarrow{BP}$=0,
∴a2+(b+m)(b-m)=0;
即m2=a2+b2;
∴m|=$\sqrt{{a}^{2}+^{2}}$,
∴m的最大值是|OC|+r=10+1=11,最小值是|OC|-r=10-1=9.
故選:B.
點(diǎn)評(píng) 本題考查了平面向量的應(yīng)用問題,也考查了直線與圓的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 2,-1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 64 | C. | $16\sqrt{7}$ | D. | $16\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{2}}}{4}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com