【題目】習(xí)大大構(gòu)建的“一帶一路”經(jīng)濟(jì)帶的發(fā)展規(guī)劃已經(jīng)得到了越來越多相關(guān)國(guó)家的重視和參與.某市順潮流、乘東風(fēng),聞迅而動(dòng),決定利用旅游資源優(yōu)勢(shì),擼起袖子大干一場(chǎng).為了了解游客的情況,以便制定相應(yīng)的策略.在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)各10天的游客數(shù),畫出莖葉圖如下:
(1)若景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是125,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124,求x,y的值;
(2)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長(zhǎng)一段時(shí)期內(nèi)的樣本數(shù)據(jù).今從這段時(shí)期中任取4天,記其中游客數(shù)超過120人的天數(shù)為ξ,求概率P(ξ≤2);
(3)現(xiàn)從上圖的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為η,求η的分布列和期望.

【答案】
(1)解:景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是125,可得X=3,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124,可得 =124,解得y=4;
(2)解:由題意知:因?yàn)榫包c(diǎn)甲的每一天的游客數(shù)超過120人的概率為 ,

任取4天,即是進(jìn)行了4次獨(dú)立重復(fù)試驗(yàn),其中有ξ次發(fā)生,

故隨機(jī)變量ξ服從二項(xiàng)分布,則P(ξ≤2)=


(3)解:從圖中看出:景點(diǎn)甲的數(shù)據(jù)中符合條件的只有1天,景點(diǎn)乙的數(shù)據(jù)中符合條件的有4天.所以在景點(diǎn)甲中被選出的概率為 ,在景點(diǎn)乙中被選出的概率為

由題意知:η的所有可能的取值為0,1,2.

則P(η=0)= P(η=1)= P(η=2)= ,

所以得分布列為:

η

0

1

2

P

Е(η)=0×


【解析】(1)利用景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是125,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124,直接求解x,y的值.(2)判斷游客數(shù)超過120人的概率,判斷是獨(dú)立重復(fù)試驗(yàn),滿足二項(xiàng)分布,然后求解概率即可.(3)求出η的所有可能的取值為0,1,2,求出概率得到分布列,然后求解期望即可.
【考點(diǎn)精析】掌握莖葉圖和離散型隨機(jī)變量及其分布列是解答本題的根本,需要知道莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+2a)﹣ax,a>0.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)記f(x)的最大值為M(a),若a2>a1>0且M(a1)=M(a2),求證: ;
(Ⅲ)若a>2,記集合{x|f(x)=0}中的最小元素為x0 , 設(shè)函數(shù)g(x)=|f(x)|+x,求證:x0是g(x)的極小值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以點(diǎn)(0,1)為圓心且與直線mx﹣y﹣2m﹣1=0(x∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=BE=BC=2AD=2,且AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD,
(Ⅰ)求證:面ADE⊥面 BDE;
(Ⅱ)求直線AD與平面DCE所成角的正弦值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),定點(diǎn)A,B,C,O滿足 |=2, = ,動(dòng)點(diǎn)P,M滿足 的最大值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,記關(guān)于x的不等式f(x)<g(x)的解集為M.
(1)若a﹣3∈M,求實(shí)數(shù)a的取值范圍;
(2)若[﹣1,1]M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為4π,且對(duì)x∈R,有f(x)≤f( )成立,則關(guān)于函數(shù)f(x)的下列說法中正確的是( )
①φ=
②函數(shù)f(x)在區(qū)間[﹣π,π]上遞減;
③把g(x)=sin 的圖象向左平移 得到f(x)的圖象;
④函數(shù)f(x+ )是偶函數(shù).
A.①③
B.①②
C.②③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo)x)、推理(能力指標(biāo)y)、建模(能力指標(biāo)z)的相關(guān)性,并將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)w=x+y+z的值評(píng)定學(xué)生的數(shù)學(xué)核心素養(yǎng);若w≥7,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若5≤w≤6,則數(shù)學(xué)核心素養(yǎng)為二級(jí);若3≤w≤4,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下結(jié)果:

學(xué)生編號(hào)

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

(x,y,z)

(2,2,3)

(3,2,3)

(3,3,3)

(1,2,2)

(2,3,2)

(2,3,3)

(2,2,2)

(2,3,3)

(2,1,1)

(2,2,2)


(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;
(2)從數(shù)學(xué)核心素養(yǎng)等級(jí)是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為a,從數(shù)學(xué)核心素養(yǎng)等級(jí)不是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為b,記隨機(jī)變量X=a﹣b,求隨機(jī)變量X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的兩個(gè)焦點(diǎn)為 的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為 ,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案