【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最大值;
(2)設(shè)函數(shù)為在區(qū)間上的最大值,求的解析式;
(3)求的最小值.
【答案】(1)0(2)t(a)(3)12﹣8
【解析】
(1)a=1時(shí),函數(shù)f(x)=(x﹣1)2﹣1,根據(jù)二次函數(shù)的性質(zhì)即可求出它的值域;
(2)化簡(jiǎn)g(x)=|f(x)|=|x(x﹣2a)|,討論確定函數(shù)的單調(diào)性,求出最大值,得出t(a)的解析式;
(3)分別求出各段函數(shù)的最小值(或下確界),比較各個(gè)最小值,其中的最小值,即為求t(a)的最小值.
(1)a=1時(shí),f(x)=x2﹣2x=(x﹣1)2﹣1,
∵x∈[0,2],∴﹣1≤x﹣1≤1,
∴﹣1≤(x﹣1)2﹣1≤0,
在區(qū)間上的最大值為0;
(2)g(x)=|f(x)|=|x(x﹣2a)|,
①當(dāng)a≤0時(shí),g(x)=x2﹣2ax在[0,2]上是增函數(shù),
故t(a)=g(2)=4﹣4a;
②當(dāng)0<a<1時(shí),
g(x)在[0,a)上是增函數(shù),在[a,2a)上是減函數(shù),在[2a,2]上是增函數(shù),
而g(a)=a2,g(2)=4﹣4a,
g(a)﹣g(2)=a2+4a﹣4=(a﹣22)(a+22),
故當(dāng)0<a<22時(shí),
t(a)=g(2)=4﹣4a,
當(dāng)22≤a<1時(shí),
t(a)=g(a)=a2,
③當(dāng)1≤a<2時(shí),
g(x)在[0,a)上是增函數(shù),在[a,2]上是減函數(shù),
故t(a)=g(a)=a2,
④當(dāng)a≥2時(shí),g(x)在[0,2]上是增函數(shù),
t(a)=g(2)=4a﹣4,
故t(a);
(3)由(2)知,
當(dāng)a<22時(shí),t(a)=4﹣2a是單調(diào)減函數(shù),,無最小值;
當(dāng)時(shí),t(a)=a2是單調(diào)增函數(shù),且t(a)的最小值為t(22)=12﹣8;
當(dāng)時(shí),t(a)=4a﹣4是單調(diào)增函數(shù),最小值為t(2)=4;
比較得t(a)的最小值為t(22)=12﹣8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點(diǎn)的坐標(biāo)為.
(1)求點(diǎn)的坐標(biāo);
(2)求函數(shù)的單調(diào)增區(qū)間及對(duì)稱軸方程;
(3)若把方程的正實(shí)根從小到大依次排列為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形,,,現(xiàn)將沿折起,當(dāng)二面角的大小在時(shí),直線和所成角為,則的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高一學(xué)生暑假里在家讀書情況,特隨機(jī)調(diào)查了50名男生和50名女生平均每天的閱讀時(shí)間(單位:分鐘),統(tǒng)計(jì)如下表:
(1)根據(jù)統(tǒng)計(jì)表判斷男生和女生誰的平均讀書時(shí)間更長(zhǎng)?并說明理由;
(2)求100名學(xué)生每天讀書時(shí)間的平均數(shù),并將每天平均時(shí)間超過和不超過平均數(shù)的人數(shù)填入下列的列聯(lián)表:
(3)根據(jù)(2)中列聯(lián)表,能否有99%的把握認(rèn)為“平均閱讀時(shí)間超過或不超過平均數(shù)是否與性別有關(guān)?”
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為上的偶函數(shù),當(dāng)時(shí),.對(duì)于結(jié)論
(1)當(dāng)時(shí),;
(2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為;
(3)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是
以上說法正確的序號(hào)是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):
據(jù)此估計(jì),該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.
【答案】(1);.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡(jiǎn)得直角坐標(biāo)方程.(II)求得兩點(diǎn)的坐標(biāo), 設(shè)點(diǎn),代入向量,利用三角函數(shù)的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數(shù)方程為(為參數(shù)).
直線的直角坐標(biāo)方程為.
(Ⅱ)由直線的方程可得點(diǎn),點(diǎn).
設(shè)點(diǎn),則 .
.
由(Ⅰ)知,則 .
因?yàn)?/span>,所以.
【題型】解答題
【結(jié)束】
23
【題目】選修4-5:不等式選講
已知函數(shù), .
(Ⅰ)若對(duì)于任意, 都滿足,求的值;
(Ⅱ)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),橢圓的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).
(1)求的方程;
(2)設(shè)過點(diǎn)的動(dòng)直線與相交于兩點(diǎn),問:是否存在直線,使以為直徑的圓經(jīng)過原點(diǎn),若存在,求出對(duì)應(yīng)直線的方程,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com