【題目】已知全集

(1)若,求實數(shù)q的取值范圍;

(2)若中有四個元素,求q的值.

【答案】1

2, ={1,3,4,5}

【解析】試題分析:(1)若 =U,則A=,根據(jù)一元二次方程根的關(guān)系即可求q的取值范圍;

(2)若中有四個元素,則等價為A為單元素集合,然后進行求解即可.

試題解析:

(1)A=U,

A=,即方程x2﹣5qx+4=0無解,或方程x2﹣5qx+4=0的解不在U中.

∴△=25q2﹣160,q

若方程x2﹣5qx+4=0的解不在U中,

此時滿足判別式△=25q2﹣160,即pp

12﹣5q1+40q1;

22﹣5q2+40q;

同理,由3、4、5不是方程的根,依次可得q,q1,q

綜上可得所求范圍是{q|qR,且q,q1,q}

(2)A中有四個元素,∴A為單元素集合,則△=25q2﹣16=0,

q=±

A={1}時,q=1,不滿足條件.;

A={2}時,q=,滿足條件.;

A={3}時,q=,不滿足條件.;

A={4}時,q=1,不滿足條件.;

A={5}時,q=,不滿足條件.,

q=,此時A={2},

對應(yīng)的UA={1,3,4,5}

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn,n∈N*.已知a1=1,a2,a3,且當n≥2時,4Sn+2+5Sn=8Sn+1+Sn-1.

(1)求a4的值;

(2)證明:為等比數(shù)列;

(3)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過坐標原點,其到函數(shù)為,數(shù)列的前項和為,點均在函數(shù)的圖像上.

(I)求數(shù)列的通項公式;

)設(shè),是數(shù)列的前n項和,求使得對所有都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,證明: 在定義域上為減函數(shù);

(Ⅱ)若.討論函數(shù)的零點情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù),其中常數(shù)

(1)若函數(shù)分別在區(qū)間上單調(diào),試求的取值范圍;

(2)當時,方程有四個不相等的實根

①證明: ;

②是否存在實數(shù),使得函數(shù)在區(qū)間單調(diào),且的取值范圍為,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把1、2、3、4、5這五個數(shù)字組成無重復(fù)數(shù)字的五位數(shù),并把它們由小大到的順序排成一個數(shù)列.

(Ⅰ)求是這個數(shù)列的第幾項;

(Ⅱ)求這個數(shù)列的第96項;

(Ⅲ)求這個數(shù)列的所有項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知橢圓方程為,點

i.若關(guān)于原點對稱的兩點記直線的斜率分別為,試計算的值;

ii.若關(guān)于原點對稱的兩點記直線的斜率分別為,試計算的值;

(2)根據(jù)上題結(jié)論探究:若是橢圓上關(guān)于原點對稱的兩點,點是橢圓上任意一點,且直線的斜率都存在,并分別記為,試猜想的值,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),現(xiàn)以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為

(1)求曲線的普通方程和直線的直角坐標方程;

(2)在曲線上是否存在一點,使點到直線的距離最?若存在,求出距離的最小值及點的直角坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案