【題目】已知全集
(1)若,求實數(shù)q的取值范圍;
(2)若中有四個元素,求和q的值.
【答案】(1);
(2), ={1,3,4,5}
【解析】試題分析:(1)若 =U,則A=,根據(jù)一元二次方程根的關(guān)系即可求q的取值范圍;
(2)若中有四個元素,則等價為A為單元素集合,然后進行求解即可.
試題解析:
(1)∵A=U,
∴A=,即方程x2﹣5qx+4=0無解,或方程x2﹣5qx+4=0的解不在U中.
∴△=25q2﹣16<0,∴<q<,
若方程x2﹣5qx+4=0的解不在U中,
此時滿足判別式△=25q2﹣16≥0,即p≥或p≤﹣,
由12﹣5q1+4≠0得q≠1;
由22﹣5q2+4≠0得q≠;
同理,由3、4、5不是方程的根,依次可得q≠,q≠1,q≠;
綜上可得所求范圍是{q|q∈R,且q≠,q≠1,q≠}.
(2)∵A中有四個元素,∴A為單元素集合,則△=25q2﹣16=0,
即q=±,
當A={1}時,q=1,不滿足條件.;
當A={2}時,q=,滿足條件.;
當A={3}時,q=,不滿足條件.;
當A={4}時,q=1,不滿足條件.;
當A={5}時,q=,不滿足條件.,
∴q=,此時A={2},
對應(yīng)的UA={1,3,4,5}.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn,n∈N*.已知a1=1,a2=,a3=,且當n≥2時,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)證明:為等比數(shù)列;
(3)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像經(jīng)過坐標原點,其到函數(shù)為,數(shù)列的前項和為,點均在函數(shù)的圖像上.
(I)求數(shù)列的通項公式;
(Ⅱ)設(shè),是數(shù)列的前n項和,求使得<對所有都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù),其中常數(shù).
(1)若函數(shù)分別在區(qū)間上單調(diào),試求的取值范圍;
(2)當時,方程有四個不相等的實根.
①證明: ;
②是否存在實數(shù),使得函數(shù)在區(qū)間單調(diào),且的取值范圍為,若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把1、2、3、4、5這五個數(shù)字組成無重復(fù)數(shù)字的五位數(shù),并把它們由小大到的順序排成一個數(shù)列.
(Ⅰ)求是這個數(shù)列的第幾項;
(Ⅱ)求這個數(shù)列的第96項;
(Ⅲ)求這個數(shù)列的所有項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知橢圓方程為,點.
i.若關(guān)于原點對稱的兩點記直線的斜率分別為,試計算的值;
ii.若關(guān)于原點對稱的兩點記直線的斜率分別為,試計算的值;
(2)根據(jù)上題結(jié)論探究:若是橢圓上關(guān)于原點對稱的兩點,點是橢圓上任意一點,且直線的斜率都存在,并分別記為,試猜想的值,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),現(xiàn)以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)在曲線上是否存在一點,使點到直線的距離最?若存在,求出距離的最小值及點的直角坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com