【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張三同學(xué)從7歲起到13歲每年生日時對自己的身高測量后記錄如下表:
年齡(歲) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高(cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高關(guān)于年齡的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學(xué)7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預(yù)測張三同學(xué)15歲時的身高.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長為的正三角形,且與底面垂直,底面是的菱形, 為的中點.
(1)求證: ;
(2)求點到平面 的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的方程為+=1(a>b>0),右焦點為F(c,0)(c>0),方程ax2+bx-c=0的兩實根分別為x1,x2,則P(x1,x2)( )
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=1外
D.必在圓x2+y2=1與圓x2+y2=2形成的圓環(huán)之間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和為,且,令.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)若,用數(shù)學(xué)歸納法證明是18的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N*,點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.
(1)求r的值;
(2)當(dāng)b=2時,記bn=2(log2an+1)(n∈N*),證明:對任意的n∈N*,不等式··…·>成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c.已知c=2,C=.
(1)若△ABC的面積等于,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com