【題目】已知等差數(shù)列的前項和為,并且,,數(shù)列滿足:,,記數(shù)列的前項和為

1)求數(shù)列的通項公式及前項和公式;

2)求數(shù)列的通項公式及前項和公式;

3)記集合,若的子集個數(shù)為16,求實數(shù)的取值范圍.

【答案】123

【解析】

試題(1)數(shù)列是等差數(shù)列,可把已知用表示出來,列出方程組,解出,從而得到通項公式和膠項和;(2)由已知得,這是數(shù)列前后項的比值,因此可用連乘法求得通項,即,從而有,它可看作是一個等差數(shù)列和一個等比數(shù)列的乘積,因此其前項和用乘公比錯位相減法求得;(3)由(1)(2)求得,不等式恒成立,即恒成立,只要求得的最小值即可,先求出前面幾項,觀察歸納猜想出單調(diào)性并給出證明(可用證明數(shù)列的單調(diào)性),從而可求得最小值,得范圍.

試題解析:(1)設(shè)數(shù)列的公差為,由題意得

2)由題意得

疊乘得

由題意得

②-①得:

3)由上面可得

下面研究數(shù)列的單調(diào)性,

時,單調(diào)遞減.

所以不等式解的個數(shù)為4,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1;

(2)若函數(shù)f(x)R上單調(diào)遞增,求實數(shù)a的取值范圍;

(3)是否存在實數(shù)a,使不等式f(x)≥2x3對任意xR恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)由方程到確定,對于函數(shù)給出下列命題:

①對任意,都有恒成立:

,使得同時成立;

③對于任意恒成立;

④對任意,,

都有恒成立.其中正確的命題共有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(理)已知數(shù)列滿足),首項

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和;

3)數(shù)列滿足,記數(shù)列的前項和為,ABC的內(nèi)角,若對于任意恒成立,求角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域為,則稱函數(shù)漸近函數(shù);

1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時實數(shù)p的值;

2)若函數(shù),證明:當(dāng)時,不是的漸近函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)參加項目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實的需要,從項目中調(diào)出人參與項目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高

1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項目從事售后服務(wù)工作?

2)在(1)的條件下,當(dāng)從項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乙兩人同時參加一次數(shù)學(xué)測試,共有20道選擇題,每題均有4個選項,答對得3,答錯或不答得0,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項不同,如果甲最終的得分為54,那么乙的所有可能的得分值組成的集合為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后的函數(shù)圖象.

給出下列四種說法:

①圖(2)對應(yīng)的方案是:提高票價,并提高成本;

②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;

③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;

④圖(3)對應(yīng)的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,數(shù)列的前項和為,且.

(1)求證:數(shù)列是等比數(shù)列,并求出通項公式;

(2)對于任意(其中,,均為正整數(shù)),若的所有乘積的和記為,試求的值;

(3)設(shè),,若數(shù)列的前項和為,是否存在這樣的實數(shù),使得對于所有的都有成立,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案