【題目】乙兩人同時參加一次數(shù)學(xué)測試,共有20道選擇題,每題均有4個選項,答對得3,答錯或不答得0,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項不同,如果甲最終的得分為54,那么乙的所有可能的得分值組成的集合為________.

【答案】

【解析】

甲最終的得分為54分,可得:甲答對了20道題目中的18道,由于甲和乙都解答了所有的試題,甲必然有2道題目答錯了,又甲和乙有2道題的選項不同,則乙可能這兩道題答對,答錯,乙也可能這2道題與甲一樣,在甲正確的題目中乙可能有兩道答錯了,即可得到結(jié)論.

因為20道選擇題每題3分,甲最終的得分為54分,所以甲答錯了2道題,又因為甲和乙有兩道題的選項不同,則他們最少有16道題的答案相同,設(shè)剩下的4道題正確答案為,甲的答案為,因為甲和乙有兩道題的選項不同,所以乙可能的答案為,,,,等,所以乙的所有可能的得分值組成的集合為,故答案為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海域的東西方向上分別有A,B兩個觀測點(如圖),它們相距海里.現(xiàn)有一艘輪船在D點發(fā)出求救信號,經(jīng)探測得知D點位于A點北偏東45°,B點北偏西60°,這時,位于B點南偏西60°且與B點相距海里的C點有一救援船,其航行速度為30海里/小時.

(1)求B點到D點的距離BD;

(2)若命令C處的救援船立即前往D點營救,求該救援船到達D點需要的時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直線與平面所成角的正弦值;

(2)若點M,N分別在AB,PC上,且平面,試確定點M,N的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】符號表示不大于x的最大整數(shù),例如:.

(1)解下列兩個方程;

(2)設(shè)方程: 的解集為A,集合,,求實數(shù)k的取值范圍;

(3)求方程的實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)若對于任意的恒成立,求滿足條件的實數(shù)m的最小值M .

(3)對于(2)中的M,正數(shù)a,b滿足,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求直線的直角坐標方程及曲線的普通方程;

(2)設(shè)是曲線上的一動點,求到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求上的最小值;

2)若,當有兩個極值點時,總有,求此時實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】底面為菱形的直棱柱

中,

分別為棱

的中點.

(1)在圖中作一個平面

,使得

,且平面

.(不必給出證明過程,只要求作出

與直棱柱

的截面).

(2)若

,求平面

與平面

的距離

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四名同學(xué)在回憶同一個函數(shù),甲說:我記得該函數(shù)定義域為,還是奇函數(shù)”.乙說:我記得該函數(shù)為偶函數(shù),值域不是”.丙說:我記得該函數(shù)定義域為,還是單調(diào)函數(shù)”.丁說:我記得該函數(shù)的圖象有對稱軸,值域是,若每個人的話都只對了一半,則下列函數(shù)中不可能是該函數(shù)的是(

A. B.

C. D.

查看答案和解析>>

同步練習冊答案