【題目】為了了解某市民眾對某項(xiàng)公共政策的態(tài)度,在該市隨機(jī)抽取了50名市民進(jìn)行調(diào)查,作出他們的月收入(單位:百元,范圍:)的頻率分布直方圖,同時(shí)得到他們月收入情況以及對該項(xiàng)政策贊成的人數(shù)統(tǒng)計(jì)表:
月收入 | 贊成的人數(shù) |
4 | |
8 | |
12 | |
5 | |
2 | |
2 |
(1)求月收入在內(nèi)的頻率,補(bǔ)全頻率分布直方圖,并在圖中標(biāo)出相應(yīng)縱坐標(biāo);
(2)若從月收入在內(nèi)的被調(diào)查者中隨機(jī)選取2人,求這2人對該項(xiàng)政策都不贊成的概率.
【答案】(1)0.3,直方圖見解析;(2).
【解析】
(1)首先計(jì)算月收入在內(nèi)的頻率,根據(jù)矩形面積表示頻率,補(bǔ)全頻率分布直方圖;
(2)首先計(jì)算月收入在內(nèi)的人數(shù),并得到其中“贊成”和“不贊成”的人數(shù),并根據(jù)列舉法求概率.
(1)月收入在內(nèi)的頻率為,補(bǔ)全頻率分布直方圖如下:
(2)月收入在內(nèi)的人數(shù)為,其中2人對該項(xiàng)政策贊成,3人對該項(xiàng)政策不贊成.
記對該項(xiàng)政策贊成的2人分別為,對該項(xiàng)政策不贊成的3人分別為,
任選取2人的所有可能情況為,共10種.
其中這2人對該項(xiàng)政策都不贊成的情況是,共3種,所以這2人對該項(xiàng)政策都不贊成的概率是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓上頂點(diǎn)為A,右焦點(diǎn)為F,直線與圓相切,其中.
(1)求橢圓的方程;
(2)不過點(diǎn)A的動(dòng)直線l與橢圓C相交于P,Q兩點(diǎn),且,證明:動(dòng)直線l過定點(diǎn),并且求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(c為常數(shù)),且f(1)=0.
(1)求c的值;
(2)證明函數(shù)f(x)在[0,2]上是單調(diào)遞增函數(shù);
(3)已知函數(shù)g(x)=f(ex),判斷函數(shù)g(x)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的華為手機(jī)專賣店對該市市民使用華為手機(jī)的情況進(jìn)行調(diào)查.在使用華為手機(jī)的用戶中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻率分布直方圖如圖:
(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)的估計(jì)值(均精確到個(gè)位);
(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機(jī)宣傳活動(dòng),再從這20人中年齡在和的人群里,隨機(jī)選取2人各贈(zèng)送一部華為手機(jī),求這2名市民年齡都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)時(shí),討論單調(diào)性;
(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中,、分別為棱、的中點(diǎn),是線段上的點(diǎn),且,若、分別為線段、上的動(dòng)點(diǎn),則的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其上焦點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)過點(diǎn)的直線交橢圓于,兩點(diǎn).試探究以線段為直徑的圓是否過定點(diǎn)?若過,求出定點(diǎn)坐標(biāo),若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷的奇偶性并說明理由;
(2)若,試判斷函數(shù)的單調(diào)性,并用定義法證明;
(3)若已知,且函數(shù)在區(qū)間[1,+∞)上的最小值為-2,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)存在單調(diào)遞減區(qū)間.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)函數(shù),(e是自然對數(shù)的底數(shù)).是否存在實(shí)數(shù)a,使g(x)在[a,-a]上為減函數(shù)?若存在,求a的取值范圍;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com