【題目】袋子中有四張卡片,分別寫有“國”、“富”、“民”、“強(qiáng)”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“國”“富”兩個(gè)字都取到記為事件A,用隨機(jī)模擬的方法估計(jì)事件A發(fā)生的概率,利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“國”、“富”、“民”、“強(qiáng)”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
231 | 232 | 210 | 023 | 122 | 021 | 321 | 220 | 031 |
231 | 103 | 133 | 132 | 001 | 320 | 123 | 130 | 233 |
由此可以估計(jì)事件A發(fā)生的概率為_____.
【答案】
【解析】
經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù),利用列舉法求出其中事件A發(fā)生的隨機(jī)數(shù)有6個(gè),由此能估計(jì)事件A發(fā)生的概率.
由題意,袋子中有四張卡片,分別寫有“國”、“富”、“民”、“強(qiáng)”四個(gè)字,
有放回地從中任取一張卡片,將三次抽取后“國”“富”兩個(gè)字都取到記為事件A,
用隨機(jī)模擬的方法估計(jì)事件A發(fā)生的概率,
利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),
分別代表“國”、“富”、“民”、“強(qiáng)”這四個(gè)字,
以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù),
其中事件A發(fā)生的隨機(jī)數(shù)有:210,021,031,103,001,130,共6個(gè),
所以估計(jì)事件A發(fā)生的概率為P.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園計(jì)劃在矩形空地上建造一個(gè)扇形花園如圖①所示,矩形的邊與邊的長分別為48米與40米,扇形的圓心為中點(diǎn),扇形的圓弧端點(diǎn),分別在與上,圓弧的中點(diǎn)在上.
(1)求扇形花園的面積(精確到1平方米);
(2)若在扇形花園內(nèi)開辟出一個(gè)矩形區(qū)域為花卉展覽區(qū).如圖②所示,矩形的四條邊與矩形的對應(yīng)邊平行,點(diǎn),分別在,上,點(diǎn),在扇形的弧上.某同學(xué)猜想:當(dāng)矩形面積最大時(shí),兩矩形與的形狀恰好相同(即長與寬之比相同),試求花卉展覽區(qū)面積的最大值,并判斷上述猜想是否正確(請說明理由).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線,直線交拋物線于,兩點(diǎn),是拋物線外一點(diǎn),連接,分別交拋物線于點(diǎn),,且.
(Ⅰ)若,求點(diǎn)的軌跡方程;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=ex﹣cosx,則不等式f(2x﹣1)+f(x﹣2)>0的解集為( )
A.(﹣∞,1)B.(﹣∞,)C.(,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒屬于屬的冠狀病毒,有包膜,顆粒常為多形性,其中包含著結(jié)構(gòu)為數(shù)學(xué)模型的,,人體肺部結(jié)構(gòu)中包含,的結(jié)構(gòu),新型冠狀病毒肺炎是由它們復(fù)合而成的,表現(xiàn)為.則下列結(jié)論正確的是( )
A.若,則為周期函數(shù)
B.對于,的最小值為
C.若在區(qū)間上是增函數(shù),則
D.若,,滿足,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥底面ABCD,E在PB上.
(1)證明:AC⊥PD;
(2)若PE=2BE,求三棱錐P﹣ACE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,底面為直角梯形,,,,,,為的中點(diǎn),為的中點(diǎn),平面底面.
(Ⅰ)證明:平面平面;
(Ⅱ)若與底面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)669人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案一:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)669次.
方案二:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽性,則需對這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這時(shí)該組個(gè)人的血總共需要化驗(yàn)次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案二中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列.
(2)設(shè),試比較方案二中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案一,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,若存在,使得對任意都成立,則稱數(shù)列為“折疊數(shù)列”.
(1)若,,判斷數(shù)列,是否是“ 折疊數(shù)列”,如果是,指出m的值;如果不是,請說明理由;
(2)若,求所有的實(shí)數(shù)q,使得數(shù)列是3-折疊數(shù)列;
(3)給定常數(shù),是否存在數(shù)列使得對所有,都是折疊數(shù)列,且的各項(xiàng)中恰有個(gè)不同的值,證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com