【題目】四棱錐中,底面為直角梯形,,,,,,為的中點,為的中點,平面底面.
(Ⅰ)證明:平面平面;
(Ⅱ)若與底面所成的角為,求二面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)根據線段中點的性質、平行四邊形形的判定定理和性質定理,結合面面垂直的性質定理和判定定理、平行線的性質進行證明即可;
(Ⅱ)連結,根據等腰三角形的性質,結合面面垂直的性質定理可以證明出底面,這樣可以建立以,,分別為,,軸的正方向建立空間直角坐標系,根據空間向量夾角公式進行求解即可.
(Ⅰ)
四邊形是平行四邊形
.
又,.
又面面,面面,
面
面
且面
平面平面.
(Ⅱ)連結,,為中點,
又平面,平面平面,
平面平面,
底面,
又,以,,分別為,,軸的正方向建立空間直角坐標系,設,,取平面的法向量,,,
,,
,
設平面的法向量,
,令,
,.
設二面角的平面角為
又為鈍角,,即二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為(為參數),直線的參數方程為(為參數).設直線與的交點為,當變化時的點的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設射線的極坐標方程為且,點是射線與曲線的交點,求點的極徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“國”、“富”、“民”、“強”四個字,有放回地從中任取一張卡片,將三次抽取后“國”“富”兩個字都取到記為事件A,用隨機模擬的方法估計事件A發(fā)生的概率,利用電腦隨機產生整數0,1,2,3四個隨機數,分別代表“國”、“富”、“民”、“強”這四個字,以每三個隨機數為一組,表示取卡片三次的結果,經隨機模擬產生了以下18組隨機數:
231 | 232 | 210 | 023 | 122 | 021 | 321 | 220 | 031 |
231 | 103 | 133 | 132 | 001 | 320 | 123 | 130 | 233 |
由此可以估計事件A發(fā)生的概率為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axex,g(x)=x2+2x+b,若曲線y=f(x)與曲線y=g(x)都過點P(1,c).且在點P處有相同的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)若關于x的不等式k[ef(x)]≥g(x)對任意x∈[﹣1,+∞)恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD的底面是正方形,底面ABCD,,E是側棱的中點.
(1)求異面直線AE與PD所成的角;
(2)求點B到平面ECD的距離
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,已知方程(為常數)在上恰有三個根,分別為,下述四個結論:
①當時,的取值范圍是;
②當時,在上恰有2個極小值點和1個極大值點;
③當時,在上單調遞增;
④當時,的取值范圍為,且
其中正確的結論個數為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點.
(Ⅰ)求證:AB∥平面DEG;
(Ⅱ)求證:BD⊥EG;
(Ⅲ)求多面體ADBEG的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com