【題目】四棱錐P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥底面ABCD,E在PB上.
(1)證明:AC⊥PD;
(2)若PE=2BE,求三棱錐P﹣ACE的體積.
【答案】(1)證明見解析;(2)
【解析】
(1)過A作AF⊥DC于F,推導出AC⊥DA,AC⊥PA,從而AC⊥平面PAD,由此能求出AC⊥PD.
(2)由VP﹣ACE=VP﹣ABC﹣VE﹣ABC,能求出三棱錐P﹣ACE的體積.
(1)過A作AF⊥DC于F,
因為AB∥CD,AB⊥BC,AB=BC=1,所以CF=DF=AF=1,
所以∠DAC=90°,所以AC⊥DA,
又PA⊥底面ABCD,AC平面ABCD,所以AC⊥PA,
又PA,AD平面PAD,PA∩AD=A,所以AC⊥平面PAD,
又PD平面PAD,∴AC⊥PD.
(2)由PE=2BE,可得VP﹣ACE=VP﹣ABC﹣VE﹣ABC,
所以,,
所以三棱錐P﹣ACE的體積VP﹣ACE=VP﹣ABC﹣VE﹣ABC.
科目:高中數(shù)學 來源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的.從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個全等的菱形面構(gòu)成.如圖,在正六棱柱的三個頂點處分別用平面,平面,平面截掉三個相等的三棱錐,,,平面,平面,平面交于點,就形成了蜂巢的結(jié)構(gòu),如下圖(4)所示,
瑞士數(shù)學家克尼格利用微積分的方法證明了蜂巢的這種結(jié)構(gòu)是在相同容積下所用材料最省的,英國數(shù)學家麥克勞林通過計算得到菱形的一個內(nèi)角為,即.以下三個結(jié)論①;② ;③四點共面,正確命題的個數(shù)為______個;若,,,則此蜂巢的表面積為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】區(qū)塊鏈技術(shù)被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號 | 1 | 2 | 3 | 4 | 5 |
企業(yè)總數(shù)量y(單位:千個) | 2.156 | 3.727 | 8.305 | 24.279 | 36.224 |
注:參考數(shù)據(jù)(其中z=lny).
附:樣本(xi,yi)(i=1,2,…,n)的最小二乘法估計公式為
(1)根據(jù)表中數(shù)據(jù)判斷,y=a+bx與y=cedx(其中e=2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)
(2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點后第三位);
(3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術(shù)比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請通過計算說明,哪兩個公司進行首場比賽時,甲公司獲得“優(yōu)勝公司”的概率最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“國”、“富”、“民”、“強”四個字,有放回地從中任取一張卡片,將三次抽取后“國”“富”兩個字都取到記為事件A,用隨機模擬的方法估計事件A發(fā)生的概率,利用電腦隨機產(chǎn)生整數(shù)0,1,2,3四個隨機數(shù),分別代表“國”、“富”、“民”、“強”這四個字,以每三個隨機數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):
231 | 232 | 210 | 023 | 122 | 021 | 321 | 220 | 031 |
231 | 103 | 133 | 132 | 001 | 320 | 123 | 130 | 233 |
由此可以估計事件A發(fā)生的概率為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD的底面是正方形,底面ABCD,,E是側(cè)棱的中點.
(1)求異面直線AE與PD所成的角;
(2)求點B到平面ECD的距離
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,側(cè)面PAD是等邊三角形,且平面平面ABCD,,.
(1)AD上是否存在一點M,使得平面平面ABCD;若存在,請證明,若不存在,請說明理由;
(2)若的面積為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四邊形是邊長為5的菱形,對角線(如圖1),現(xiàn)以為折痕將菱形折起,使點達到點的位置.棱,的中點分為,,且四面體的外接球球心落在四面體內(nèi)部(如圖2),則線段長度的取值范圍為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com