【題目】設(shè)函數(shù)f(x)(mR).

1)當(dāng)m=1時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)F(x)=f(x)+xm+2有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

【答案】(1) 遞增區(qū)間為(0,e),遞減區(qū)間為(e+∞) (2) (,﹣2e).

【解析】

1時(shí),求出,求出的解,即可得出結(jié)論;

2)求出整理,有兩個(gè)零點(diǎn),轉(zhuǎn)化為函數(shù) 有兩個(gè)零點(diǎn),求,求出極值點(diǎn),分析函數(shù)值的變化趨勢,只需g(x)的極小值g()<0方程有兩個(gè)零點(diǎn),解不等式g()<0,即可求出結(jié)論.

(1)當(dāng)m=1時(shí),f(x),x>0,∴f'(x),

f'(x)=0,得1lnx=0,x=e,

的變化變化如下表:

x

(0,e)

e

(e+∞)

f'(x)

+

0

f(x)

遞增

極大值

遞減

∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,e),單調(diào)遞減區(qū)間為(e,+∞);

(2)F(x)xm+2,定義域?yàn)?/span>(0,+∞),

F(x)xm+2

設(shè)g(x)=4mlnx+4x2+m2+4mx+8x,

∵函數(shù)F(x)=f(x)+xm+2有兩個(gè)零點(diǎn),

∴函數(shù)g(x)=4mlnx+4x2+m2+4mx+8x有兩個(gè)零點(diǎn),

g'(x),

g'(x)=0得,x

∵函數(shù)g(x)=4mlnx+4x2+m2+4mx+8x有兩個(gè)零點(diǎn),

∴函數(shù)g(x)(0,+∞)上不單調(diào),∴0,∴m<0,

的變化變化如下表:

x

(0,)

(,+∞)

g'(x)

0

+

g(x)

遞減

極小值

遞增

∴函數(shù)g(x)的極小值為g(),

∵當(dāng)x→0時(shí),g(x)→+∞;當(dāng)x→+∞時(shí),g(x)→+∞,

∴若函數(shù)g(x)=4mlnx+4x2+m2+4mx+8x有兩個(gè)零點(diǎn),

則函數(shù)g(x)的極小值g()<0

4mln()+4m24m4m<0,

mln()m<0,又∵m<0,∴ln()>1,

e,∴m<2e,

∴實(shí)數(shù)m的取值范圍為:(,﹣2e).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)

1)求的值及函數(shù)的解析式;

2)若不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍;

3)如果關(guān)于的方程有三個(gè)相異的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線是雙曲線的一條漸近線,點(diǎn)在雙曲線C上,設(shè)坐標(biāo)原點(diǎn)為O.

1)求雙曲線C的方程;

2)若過點(diǎn)的直線l與雙曲線C交于R、S兩點(diǎn),若,求直線l的方程;

3)設(shè)在雙曲線上,且直線AMy軸相交于點(diǎn)P,點(diǎn)M關(guān)于y軸對稱的點(diǎn)為N,直線ANy軸相交于點(diǎn)Q,問:在x軸上是否存在定點(diǎn)T,使得?若存在,求出點(diǎn)T的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.

1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?

2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價(jià)均為每平方米100.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,若對任意正整數(shù)n,總存在正整數(shù)m,使得,則稱是“H數(shù)列”;

(1)若數(shù)列的前n項(xiàng)和(),判斷數(shù)列是否是“H數(shù)列”?若是,給出證明;若不是,說明理由;

(2)設(shè)數(shù)列是常數(shù)列,證明:為“H數(shù)列”的充要條件是;

(3)設(shè)是等差數(shù)列,其首項(xiàng),公差,若是“H數(shù)列”,求d的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BCAB=AD=AC=3,PA=BC=4M為線段AD上一點(diǎn),AM=2MD,NPC的中點(diǎn).

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線的方程為,曲線的方程為.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系

(1)求曲線,的直角坐標(biāo)方程;

(2)若曲線軸相交于點(diǎn),與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,、是兩個(gè)垃圾中轉(zhuǎn)站,的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個(gè)垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個(gè)要求(、可看成三個(gè)點(diǎn)):①垃圾發(fā)電廠到兩個(gè)垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應(yīng)盡量遠(yuǎn)離居民區(qū)(這里參考的指標(biāo)是點(diǎn)到直線的距離要盡可能大).現(xiàn)估測得兩個(gè)中轉(zhuǎn)站每天集中的生活垃圾量分別約為噸和噸.設(shè)

1)求(用的表達(dá)式表示);

2)垃圾發(fā)電廠該如何選址才能同時(shí)滿足上述要求?

查看答案和解析>>

同步練習(xí)冊答案