【題目】已知實(shí)數(shù),滿足,實(shí)數(shù),滿足,則的最小值為__________.
【答案】1
【解析】由ln(b+1)+a3b=0,得a=3bln(b+1),則點(diǎn)(b,a)是曲線y=3xln(x+1)上的任意一點(diǎn),
由2dc =0,得c=2d ,則點(diǎn)(d,c)是直線y=2x 上的任意一點(diǎn),
因?yàn)?/span>(ac)2+(bd)2表示點(diǎn)(b,a)到點(diǎn)(d,c)的距離的平方,即曲線上的一點(diǎn)與直線上一點(diǎn)的距離的平方,
所以(ac)2+(bd)2的最小值就是曲線上的點(diǎn)到直線距離的最小值的平方,即曲線上與直線y=2x 平行的切線到該直線的距離的平方。
,令y′=2,得x=0,此時(shí)y=0,即過原點(diǎn)的切線方程為y=2x,
則曲線上的點(diǎn)到直線距離的最小值的平方d2= =1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列前三項(xiàng)為a,4,3a,前n項(xiàng)的和為Sn , 若Sk=90.
(1)求a及k的值;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓心坐標(biāo)為( ,1)的圓M與x軸及直線y= x分別相切于A,B兩點(diǎn),另一圓N與圓M外切、且與x軸及直線y= x分別相切于C、D兩點(diǎn).
(1)求圓M和圓N的方程;
(2)過點(diǎn)B作直線MN的平行線l,求直線l被圓N截得的弦的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)M(1,2),且直線l與x軸正半軸和y軸的正半軸交點(diǎn)分別是A、B,(如圖,注意直線l與坐標(biāo)軸的交點(diǎn)都在正半軸上)
(1)若三角形AOB的面積是4,求直線l的方程.
(2)求過點(diǎn)N(0,1)且與直線l垂直的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G分別是棱A1B1、BB1、B1C1的中點(diǎn),則下列結(jié)論中:
①FG⊥BD
②B1D⊥面EFG
③面EFG∥面ACC1A1
④EF∥面CDD1C1
正確結(jié)論的序號是( )
A.①和②
B.②和④
C.①和③
D.③和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(4,0),B(6,7),C(0,3).
①求BC邊上的高所在直線的方程;
②求BC邊上的中線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市對創(chuàng)“市級優(yōu)質(zhì)學(xué)校”的甲、乙兩所學(xué)校復(fù)查驗(yàn)收,對辦學(xué)的社會滿意度一項(xiàng)評價(jià)隨機(jī)訪問了位市民,根據(jù)這位市民對這兩所學(xué)校的評分(評分越高表明市民的評價(jià)越好),繪制莖葉圖如下:
(1)分別估計(jì)該市的市民對甲、乙兩所學(xué)校評分的中位數(shù);
(2)分別估計(jì)該市的市民對甲、乙兩所學(xué)校的評分不低于分的概率;
(3)根據(jù)莖葉圖分析該市的市民對甲、乙兩所學(xué)校的評價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的側(cè)棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD= CD=2,點(diǎn)M在側(cè)棱上.
(1)求證:BC⊥平面BDP;
(2)若側(cè)棱PC與底面ABCD所成角的正切值為 ,點(diǎn)M為側(cè)棱PC的中點(diǎn),求異面直線BM與PA所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com