【題目】在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若點(diǎn)的直角坐標(biāo)為,求直線及曲線的直角坐標(biāo)方程;
(2)若點(diǎn)在圓上,直線與交于兩點(diǎn),求的值.
【答案】(1),;(2)3
【解析】
(1)由ρ=1,得x2+y2=1,可得曲線C的直角坐標(biāo)方程為x2+y2=1.又由直線的參數(shù)方程可知點(diǎn)在直線上,斜率為1,可得直線l的直角坐標(biāo)方程.
(2) 把直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,利用一元二次方程的根與系數(shù)的關(guān)系即可得出.
(1)曲線:化為直角坐標(biāo)方程為:
又由直線的參數(shù)方程可知:點(diǎn)在直線上,斜率為1,
∴直線的直角坐標(biāo)方程為:即 .
(2)將直線的參數(shù)方程與曲線C的直角坐標(biāo)方程聯(lián)立可得:
則(其中、為方程的兩根)
又點(diǎn)在圓上,則,
故 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù).
若,直線l與x軸的交點(diǎn)為M,N是圓C上一動點(diǎn),求的最小值;
若直線l被圓C截得的弦長等于圓C的半徑,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(1)求,的值;
(2)證明:;
(3)若在定義域內(nèi)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于回歸分析的說法中錯誤的序號為_______
(1)殘差圖中殘差點(diǎn)所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越高.
(2)回歸直線一定過樣本中心點(diǎn).
(3)兩個模型中殘差平方和越小的模型擬合的效果越好.
(4)甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是大于10的正整數(shù),集合含有個元素,若集族滿足以下兩個條件,則稱它是“合適的”:
(1)對任意;
(2)對任意,集合中至多含有一個元素。
對任意正整數(shù),試求最大正整數(shù),使得存在一個包含個集合的合適的集族。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,頂點(diǎn)為原點(diǎn)的拋物線,它是焦點(diǎn)為橢圓的右焦點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過拋物線的焦點(diǎn)作互相垂直的兩條直線分別交拋物線于四點(diǎn),求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
求函數(shù)圖象上一點(diǎn)處的切線方程.
若方程在內(nèi)有兩個不等實(shí)根,求實(shí)數(shù)a的取值范圍為自然對數(shù)的底數(shù).
求證,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二期中考試后,教務(wù)處計劃對全年級數(shù)學(xué)成績進(jìn)行統(tǒng)計分析,從男、女生中各隨機(jī)抽取100名學(xué)生,分別制成了男生和女生數(shù)學(xué)成績的頻率分布直方圖,如圖所示.
(1)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(2)在(1)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com