雙曲線
與橢圓
(a>0,m>b>0)的離心率互為倒數(shù),那
么以a、b、m為邊長的三角形是
A.銳角三角形 | B.直角三角形 | C.鈍角三角形 | D.等邊三角形 |
析:求出橢圓與雙曲線的離心率,利用離心率互為倒數(shù),推出a,b,m的關系,判斷三角形的形狀.
解答:解:雙曲線
和橢圓
(a>0,m>b>0)的離心率互為倒數(shù),所以
?
=1,
所以b
2m
2-a
2b
2-b
4=0即m
2=a
2+b
2,所以以a,b,m為邊長的三角形是直角三角形.
故選C.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題満分12分)
已知一條曲線上的每個點M到A(1,0)的距離減去它到y軸的距離差都是1.
(1)求曲線的方程;
(2)討論直線y=kx+1(k∈R)與曲線的公共點個數(shù)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在
上有一點
,它到
的距離與它到焦點的距離之和最小,則點
的坐標是( )
A.(-2,1) | B.(1,2) | C.(2,1) | D.(-1,2) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分)已知曲線
上的動點
滿足到點
的距離比到直線
的距離小
.
(1)求曲線
的方程;
(2)動點
在直線
上,過點
作曲線
的切線
,切點分別為
、
.
(。┣笞C:直線
恒過一定點,并求出該定點的坐標;
(ⅱ)在直線
上是否存在一點
,使得
為等邊三角形(
點也在直線
上)?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設斜率為2的直線
l過拋物線
y2=
ax(
a≠0)的焦點
F,且和
y軸交于點
A,若△
OAF(
O為坐標原點)的面積為4,則拋物線的方程為( )
A.y2=±4x | B.y2=±8 | C.y2=4x | D.y2=8x |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是橢圓
的左、右焦點,過點
作
傾斜角為
的動直線
交橢圓于
兩點.當
時,
,且
.
(1)求橢圓的離心率及橢圓的標準方程;
(2)求△
面積的最大值,并求出使面積達到最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
的左焦點在拋物線
的準線上,則p的值為_______;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知雙曲線的中心在原點,離心率為
,若它的一條準線與拋物線
的準線重合,則該雙曲線的方程是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
拋物線
的焦點坐標是___________
查看答案和解析>>