精英家教網 > 高中數學 > 題目詳情

【題目】設函數,.

(1)當時,函數處的切線互相垂直,求的值;

(2)當函數在定義域內不單調時,求證:;

(3)是否存在實數,使得對任意,都有函數的圖象在的圖象的下方?若存在,請求出最大整數的值;若不存在,請說理由.(參考數據:,

【答案】(1);(2)見解析;(3)1

【解析】分析:(1)求導得切線斜率為,由垂直得斜率積為-1,從而得解;

(2),求導得,令,要使函數在定義域內不單調,只需要有非重根,利用二次方程根的分別即可得解;

(3)恒成立,令,,令,存在,使得,即,則,取到最小值, 所以,即在區(qū)間內單調遞增,從而得解.

詳解:(1)當時,,則處的斜率為,

處的斜率為,則,解得 .

(2)函數,

.

,∴,令,

要使函數在定義域內不單調,只需要有非重根,

由于開口向上,且

只需要,得

因為,所以

,當且僅當時取等號,命題得證 .

(3)假設存在實數滿足題意,則不等式恒成立,

恒成立 .

,則,

,則

因為上單調遞增,,,且的圖象在上不間斷,

所以存在,使得,即,則,

所以當時,單調遞減;當時,單調遞增.

取到最小值,

所以,即在區(qū)間內單調遞增,

所以

所以存在實數滿足題意,且最大整數的值為1 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某企業(yè)通過調查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意程度進行調查,并隨機抽取了其中30名員工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據以上數據,估計該企業(yè)得分大于45分的員工人數;

(2)現用計算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:

“滿意”的人數

“不滿意”的人數

合計

女員工

16

男員工

14

合計

30

(3)根據上述表中數據,利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業(yè)員工“性別”與“工作是否滿意”有關?

參考數據:

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在D上的函數,如果滿足:對任意,存在常數,都有成立,則稱D上的有界函數,其中M稱為函數的上界已知函數

,求函數上的值域,并判斷函數上是否為有界函數,請說明理由;

若函數上是以3為上界的有界函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).現有下列命題:
①f(﹣x)=﹣f(x);
②f( )=2f(x)
③|f(x)|≥2|x|
其中的所有正確命題的序號是(
A.①②③
B.②③
C.①③
D.①②

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用克的藥劑,藥劑在血液中的含量隨著時間小時變化的函數關系式近似為,其中

若病人一次服用9克的藥劑,則有效治療時間可達多少小時?

若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等差數列{an}的公差為d,點(an , bn)在函數f(x)=2x的圖象上(n∈N*).
(1)若a1=﹣2,點(a8 , 4b7)在函數f(x)的圖象上,求數列{an}的前n項和Sn;
(2)若a1=1,函數f(x)的圖象在點(a2 , b2)處的切線在x軸上的截距為2﹣ ,求數列{ }的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點,直線,動直線垂直于點,線段的垂直平分線交于點,設點的軌跡為

(Ⅰ)求曲線的方程;

(Ⅱ)以曲線上的點為切點做曲線的切線,設分別與軸交于兩點,且恰與以定點為圓心的圓相切.當圓的面積最小時,求面積的比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】說明:請考生在(A)、(B)兩個小題中任選一題作答。

A)已知函數;

(1)求的零點;

(2)若有三個零點,求實數的取值范圍.

B)已知函數

(1)求的零點;

(2)若,有4個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校為調查學生喜歡“應用統(tǒng)計”課程是否與性別有關,隨機抽取了選修課程的60名學生,得到數據如下表:

喜歡統(tǒng)計課程

不喜歡統(tǒng)計課程

合計

男生

20

10

30

女生

10

20

30

合計

30

30

60

(1)判斷是否有99.5%的把握認為喜歡“應用統(tǒng)計”課程與性別有關?

(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學生中抽取6名學生作進一步調查,將這6名學生作為一個樣本,從中任選3人,求恰有2個男生和1個女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

同步練習冊答案