(本小題滿分15分) 如圖,在三棱錐
中,
,
,點
分別是
的中點,
底面
.
(1)求證:
平面
;
(2)當(dāng)
時,求直線
與平面
所成角的正弦值;
(3)當(dāng)
為何值時,
在平面
內(nèi)的射影恰好為
的重心.
(1)證明見解析。
(2)
(3)
(1)證明:
平面
,
.
以
為原點,建立如圖所示空間直角坐標(biāo)系
.
設(shè)
,則
.
設(shè)
,則
.
為
的中點,
.
,
.
,
平面
.
(2)
,即
,
,
可求得平面
的法向量
.
.
設(shè)
與平面
所成的角為
,
則
.
與平面
所成的角的正弦值為
.
(3)
的重心
,
,
平面
,
.又
,
.
.
,即
.反之,當(dāng)
時,三棱錐
為正三棱錐.
在平面
內(nèi)的射影為
的重心.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在四棱錐P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD與底面成30°角.
(1)若AE⊥PD,E為垂足,求證:BE⊥PD;
(2)求異面直線AE與CD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
CD=1,PD=
.
(1)若M為PA中點,求證:AC∥平面MDE;
(2)求直線PA與平面PBC所成角的正弦值;
(3)在線段PC上是否存在一點Q(除去端點),使得平面QAD與平面PBC所成銳二面角的大小為
?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知四棱錐
的底面為直角梯形,
,
底面
,且
,
,
是
的中點。
(1)證明:面
面
;
(2)求
與
所成的角;
(3)求面
與面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點,求證:平面A1EF∥平面B1MC
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
,則向量
的夾角為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在直三棱柱
中,底面是等腰直角三角形,
,側(cè)棱
,D,E分別是
與
的中點,點E在平面
ABD上的射影是
的重心G.則
與平面
ABD所成角的余弦值 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖4,在底面是直角梯形的四棱錐
中,
,
面
,
,求面
與面
所成二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知l∥
,且l的方向向量為(2, m, 1), 平面
的法向量為(1,
, 2), 則m=
.
查看答案和解析>>