【題目】已知函數(shù) 的部分圖象如圖所示.

(1)求函數(shù)的解析式,并求出的單調(diào)遞增區(qū)間;

(2)將函數(shù)的圖象上各個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,再將圖象向右平移個(gè)單位,得到的圖象,若存在使得等式成立,求實(shí)數(shù)的取值范圍.

【答案】(1) , ;(2) .

【解析】試題分析:

(1)結(jié)合圖像求得,則函數(shù)的解析式為,結(jié)合函數(shù)的解析式可得函數(shù)的單調(diào)遞增區(qū)間是;

(2)由題意可得函數(shù)的解析式為則原問(wèn)題即為存在,使得等式成立結(jié)合復(fù)合型二次函數(shù)的性質(zhì)可得實(shí)數(shù)的取值范圍為.

試題解析:

1)設(shè)函數(shù)的周期為,由圖可知,即

,,

上式中代入,有,得, ,

,

又∵,,

,解得

的遞增區(qū)間為;

2)經(jīng)過(guò)圖象變換,得到函數(shù)的解析式為,

于是問(wèn)題即為存在,使得等式成立

上有解,令,

上有解,

其中,

∴實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)滿足: .

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),證明:直線恒過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) ,g(x)=x3﹣x2﹣3.
(1)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對(duì)任意的 ,都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

(2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)所給條件求直線的方程:
(1)直線過(guò)點(diǎn)(﹣4,0),傾斜角的正弦值為 ;
(2)直線過(guò)點(diǎn)(﹣2,1),且到原點(diǎn)的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 有一個(gè)零點(diǎn)為4,且滿足.

(1)求實(shí)數(shù)的值;

(2)試問(wèn):是否存在這樣的定值,使得當(dāng)變化時(shí),曲線在點(diǎn)處的切線互相平行?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;

(3)討論函數(shù)上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.

(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=sin(x+ )圖象上的所有點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,所得函數(shù)為f(x),則函數(shù)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;

(2)若曲線 相交于兩點(diǎn), 的中點(diǎn)為,過(guò)點(diǎn)做曲線的垂線交曲線兩點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊(cè)答案