【題目】函數(shù)的一部分圖象如圖所示,其中,.

1)求函數(shù)解析式;

2)求時(shí),函數(shù)的值域;

3)將函數(shù)的圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

【答案】1;(2;(3)單調(diào)減區(qū)間為,.

【解析】

1)根據(jù)最大值和最小值可求,結(jié)合周期及特殊點(diǎn)的坐標(biāo)可求,從而可得解析式;

2)先根據(jù),求出,結(jié)合正弦函數(shù)的簡圖可求的值域;

3)先根據(jù)圖象變換求出的解析式,然后可求的單調(diào)遞減區(qū)間.

1)根據(jù)函數(shù)的一部分圖象,其中,

,∴;∵,∴,

再根據(jù),可得,,

,∵,∴,

∴函數(shù)的解析式為

2)∵,∴,∴,

∴函數(shù)的值域?yàn)?/span>;

3)將函數(shù)的圖象向右平移個(gè)單位長度,

得到函數(shù)的圖象,

對于函數(shù),

,

求得,,

故函數(shù)的單調(diào)減區(qū)間為,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進(jìn)行美麗鄉(xiāng)村建設(shè),規(guī)劃在長為10千米的河流OC的一側(cè)建一條觀光帶,觀光帶的前一部分為曲線段OAB,設(shè)曲線段OAB為函數(shù)(單位:千米)的圖象,且曲線段的頂點(diǎn)為;觀光帶的后一部分為線段BC,如圖所示.

(1)求曲線段OABC對應(yīng)的函數(shù)的解析式;

(2)若計(jì)劃在河流OC和觀光帶OABC之間新建一個(gè)如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQ,QP, PN構(gòu)成,其中點(diǎn)P在線段BC上.當(dāng)OM長為多少時(shí),綠化帶的總長度最長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠品牌服裝的年固定成本100萬元,每生產(chǎn)1萬件需另投入27萬元,設(shè)服裝廠一年內(nèi)共生產(chǎn)該品牌服裝萬件并全部銷售完,每萬件的銷售收入為R()萬元.且

(1)寫出年利潤y(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)關(guān)系式;

(2)年產(chǎn)量為多少萬件時(shí),服裝廠在這一品牌的生產(chǎn)中所獲年利潤最大?(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有兩個(gè)不同的零點(diǎn).

(1)求的取值范圍;

(2)設(shè), 的兩個(gè)零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD

I)證明:PQ⊥平面DCQ

II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中隨機(jī)抽取部分高一學(xué)生調(diào)查其上學(xué)路上所需時(shí)間頻(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為.

(1)求直方圖中的值;

(2)如果上學(xué)路上所需時(shí)間不少于1小時(shí)的學(xué)生可申請?jiān)趯W(xué)校住宿,若招生 1200名請估計(jì)新生中有多少名學(xué)生可以申請住宿;

(3)從學(xué)校的高一學(xué)生中任選4名學(xué)生,這4名學(xué)生中上學(xué)路上所需時(shí)間少于 40分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的四棱錐中,底面與側(cè)面垂直,且四邊形為正方形, ,點(diǎn)為邊的中點(diǎn),點(diǎn)在邊上,且,過 , 三點(diǎn)的截面與平面的交線為,則異面直線所成的角為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線恒過定點(diǎn).

若直線經(jīng)過點(diǎn)且與直線垂直,求直線的方程;

若直線經(jīng)過點(diǎn)且坐標(biāo)原點(diǎn)到直線的距離等于3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為保證學(xué)生夜晚安全,實(shí)行教師值夜班制度,已知共5名教師每周一到周五都要值一次夜班,每周如此,且沒有兩人同時(shí)值夜班,周六和周日不值夜班,若昨天值夜班,從今天起至少連續(xù)4天不值夜班, 周四值夜班,則今天是周___________.

查看答案和解析>>

同步練習(xí)冊答案