【題目】如圖,正四棱錐 中底面邊長為,側(cè)棱PA與底面ABCD所成角的正切值為.
(I)求正四棱錐 的外接球半徑;
(II)若 是 中點,求異面直線 與 所成角的正切值.
科目:高中數(shù)學 來源: 題型:
【題目】簡陽羊肉湯已入選成都市級非遺項目,成為簡陽的名片。當初向各地作了廣告推廣,同時廣告對銷售收益也有影響。在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖,計算圖中各小長方形的寬度;
(Ⅱ)根據(jù)頻率分布直方圖,估計投入4萬元廣告費用之后,并將各地銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:百萬元) | 2 | 3 | 2 | 7 |
表中的數(shù)據(jù)顯示,與之間存在線性相關(guān)關(guān)系,請將(Ⅱ)的結(jié)果填入空白欄,并計算關(guān)于的回歸方程.回歸直線的斜率和截距的最小二乘估計公式分別為 , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)求過點且在兩個坐標軸上截距相等的直線方程。
(2)已知圓心為的圓經(jīng)過點和,且圓心在直線上,求圓心為的圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2=9,點A(-5,0),直線l:x-2y=0.
(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標原點),存在定點B(不同于點A),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點B的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)對于曲線上的不同兩點,如果存在曲線上的點,且使得曲線在點處的切線,則稱為弦的伴隨直線,特別地,當時,又稱為的—伴隨直線.
①求證:曲線的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線,使得曲線的任意一條弦均有—伴隨直線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學開設(shè)甲、乙、丙三門選修課,學生是否選修哪門課互不影響,已知某學生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.
(1)記“函數(shù)為上的偶函數(shù)”為事件,求事件的概率;
(2)求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com