【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.
【答案】解:(Ⅰ)證明:由正弦定理得:
即 ,
∴sinB+sinA+sinBcosA+cosBsinA=3sinC
∴sinB+sinA+sin(A+B)=3sinC
∴sinB+sinA+sinC=3sinC
∴sinB+sinA=2sinC
∴a+b=2c
∴a,c,b成等差數(shù)列.
(Ⅱ)
∴ab=8
c2=a2+b2﹣2abcosC
=a2+b2﹣ab
=(a+b)2﹣3ab
=4c2﹣24.
∴c2=8得
【解析】(Ⅰ)利用正弦定理以及兩角和與差的三角函數(shù),三角形的內(nèi)角和,化簡(jiǎn)求解即可.(Ⅱ)利用三角形的面積以及余弦定理化簡(jiǎn)求解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確是 , (寫(xiě)出所有正確命題的序號(hào))
①若奇函數(shù)f(x)的周期為4,則函數(shù)f(x)的圖象關(guān)于(2,0)對(duì)稱;
②若a∈(0,1),則a1+a<a ;
③函數(shù)f(x)=ln 是奇函數(shù);
④存在唯一的實(shí)數(shù)a使f(x)=lg(ax+ )為奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒(méi)什么問(wèn)題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如表:
成績(jī)/編號(hào) | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)(y) | 130 | 125 | 110 | 95 | 90 |
(參考公式: = , = ﹣ )
參考數(shù)據(jù):902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學(xué)成績(jī)y關(guān)于物理成績(jī)x的線性回歸方程 = x+ ( 精確到0.1),若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的這五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識(shí)競(jìng)賽,以X表示選中的學(xué)生的數(shù)學(xué)成績(jī)高于100分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)的表達(dá)式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對(duì)稱中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項(xiàng)公式為an=f( )(n∈N),則此數(shù)列前2017項(xiàng)的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(I)作出函數(shù)f(x)的圖象;
(Ⅱ)若不等式 ≤f(x)有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸非負(fù)半軸重合,直線l的參數(shù)方程為: (t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)設(shè)直線l與曲線C相交于P,Q兩點(diǎn),求|PQ|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知遞增數(shù)列{an},a1=2,其前n項(xiàng)和為Sn , 且滿足3(Sn+Sn﹣1)= +2(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 =n,求其前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中xOy中,已知曲線E經(jīng)過(guò)點(diǎn)P(1, ),其參數(shù)方程為 (α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線E的極坐標(biāo)方程;
(2)若直線l交E于點(diǎn)A、B,且OA⊥OB,求證: 為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次數(shù)學(xué)測(cè)試之后,數(shù)學(xué)組的老師對(duì)全校數(shù)學(xué)總成績(jī)分布在[105,135)的n名同學(xué)的19題成績(jī)進(jìn)行了分析,數(shù)據(jù)整理如下:
組數(shù) | 分組 | 19題滿分人數(shù) | 19題滿分人數(shù)占本組人數(shù)比例 |
第一組 | [105,110] | 15 | 0.3 |
第二組 | [110,115) | 30 | 0.3 |
第三組 | [115,120) | x | 0.4 |
第四組 | [120,125) | 100 | 0.5 |
第五組 | [125,130) | 120 | 0.6 |
第六組 | [130,135) | 195 | y |
(Ⅰ)補(bǔ)全所給的頻率分布直方圖,并求n,x,y的值;
(Ⅱ)現(xiàn)從[110,115)、[115,120)兩個(gè)分?jǐn)?shù)段的19題滿分的試卷中,按分層抽樣的方法抽取9份進(jìn)行展出,并從9份試卷中選出兩份作為優(yōu)秀試卷,優(yōu)秀試卷在[115,120)中的分?jǐn)?shù)記為ξ,求隨機(jī)變量ξ的分布列及期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com