【題目】已知極坐標系的極點在直角坐標系的原點處,極軸與x軸非負半軸重合,直線l的參數(shù)方程為: (t為參數(shù)),曲線C的極坐標方程為:ρ=4cosθ.
(1)寫出曲線C的直角坐標方程和直線l的普通方程;
(2)設直線l與曲線C相交于P,Q兩點,求|PQ|的值.
【答案】
(1)解:∵ρ=4cosθ.∴ρ2=4ρcosθ,
∵ρ2=x2+y2,ρcosθ=x,∴x2+y2=4x,
所以曲線C的直角坐標方程為(x﹣2)2+y2=4,
由 (t為參數(shù))消去t得: .所以直線l的普通方程為 .
(2)解:把 代入x2+y2=4x得:t2﹣3 t+5=0.
設其兩根分別為t1,t2,則t1+t2=3 ,t1t2=5.
所以|PQ|=|t1﹣t2|= =
【解析】(1)利用極坐標與直角坐標的對于關系即可得出曲線C的方程;對直線l的參數(shù)方程消參數(shù)可得直線l的普通方程;(2)把直線l的參數(shù)方程代入曲線C的直角坐標方程得出關于參數(shù)t的一元二次方程,利用參數(shù)的幾何意義和根與系數(shù)的關系計算|PQ|.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+lnx,其中a為常數(shù),設e為自然對數(shù)的底數(shù).
(1)當a=﹣1時,求f(x)的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為﹣3,求a的值;
(3)設g(x)=xf(x),若a>0,對于任意的兩個正實數(shù)x1 , x2(x1≠x2),證明:2g( )<g(x1)+g(x2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (a,b∈R,且a≠0,e為自然對數(shù)的底數(shù)).
(I)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數(shù)a的取值范圍.
(II)(i)當 a=b=l 時,證明:xf(x)+2<0;
(ii)當 a=1,b=﹣1 時,若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內(nèi)恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù)f(x)滿足f′(x)+2f(x)= ,且f(1)= ,則不等式f(lnx)>f(3)的解集為( )
A.(﹣∞,e3)
B.(0,e3)
C.(1,e3)
D.(e3 , +∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以該直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ﹣4cosθ=0.
(1)求直線l與曲線C的普通方程;
(2)已知直線l與曲線C交于A,B兩點,設M(2,0),求| |的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題p:若定義域為R的函數(shù)f(x)不是偶函數(shù),則x∈R,f(﹣x)≠f(x).命題q:f(x)=x|x|在(﹣∞,0)上是減函數(shù),在(0,+∞)上是增函數(shù).則下列判斷錯誤的是( )
A.p為假
B.¬q為真
C.p∨q為真
D.p∧q為假
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+ |+|x﹣a|(a>0) (Ⅰ)證明:f(x)≥2 ;
(Ⅱ)當a=1時,求不等式f(x)≥5的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com