【題目】為了解學(xué)生自主學(xué)習(xí)期間完成數(shù)學(xué)套卷的情況,一名教師對(duì)某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表.

1)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生完成套卷數(shù)之和為4的概率?

2)若從完成套卷數(shù)不少于4套的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

3)試判斷男學(xué)生完成套卷數(shù)的方差與女學(xué)生完成套卷數(shù)的方差的大。ㄖ恍鑼(xiě)出結(jié)論).

【答案】12)詳見(jiàn)解析(3

【解析】

(1)根據(jù)組合的方法求解所有可能的情況與滿足條件的情況數(shù)再計(jì)算概率即可.

(2)的取值為0,1,2,3,4.再根據(jù)超幾何分布的方法求分布列與數(shù)學(xué)期望即可.

(3)直接根據(jù)數(shù)據(jù)觀察穩(wěn)定性判斷的大小即可.

解:(1)設(shè)事件:從這個(gè)班級(jí)的學(xué)生中隨機(jī)選取一名男生,一名女生,這兩名學(xué)生完成套卷數(shù)之和為4,

由題意可知,.

2)完成套卷數(shù)不少于4本的學(xué)生共8人,其中男學(xué)生人數(shù)為4人,故的取值為0,1,2,3,4.

由題意可得;

;

;

.

所以隨機(jī)變量的分布列為

0

1

2

3

4

隨機(jī)變量的均值.

(3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,左項(xiàng)點(diǎn)為上頂點(diǎn)為.已知.

1)求橢圓的離心率;

2)設(shè)為橢圓上在第一象限內(nèi)一點(diǎn),射線與橢圓的另一個(gè)公共點(diǎn)為,滿足,直線軸于點(diǎn),的面積為.

(i)求橢圓的方程.

(ii)過(guò)點(diǎn)作不與軸垂直的直線交橢圓(異于點(diǎn))兩點(diǎn),試判斷的大小是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,是橢圓上的點(diǎn),過(guò)點(diǎn)的直線的方程為.

1)求橢圓的離心率;

2)當(dāng)時(shí),

i)設(shè)直線軸、軸分別相交于兩點(diǎn),求的最小值;

ii)設(shè)橢圓的左、右焦點(diǎn)分別為,,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱(chēng),求證:點(diǎn),三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】車(chē)間將10名技工平均分成甲乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為10.

(1)分別求出,的值;

(2)質(zhì)檢部門(mén)從該車(chē)間甲乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件個(gè)數(shù)之和大于17,則稱(chēng)該車(chē)間“質(zhì)量合格”,求該車(chē)間“質(zhì)量合格”的概率;

(3)根據(jù)以上莖葉圖和你所學(xué)的統(tǒng)計(jì)知識(shí),分析兩組技工的整體加工水平及穩(wěn)定性.

(注:方差,其中為數(shù)據(jù),,…,的平均數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是兩條不同直線,,是兩個(gè)不同平面,給出下列四個(gè)命題:

①若,垂直于同一平面,則平行;

②若平行于同一平面,則平行;

③若,不平行,則在內(nèi)不存在與平行的直線;

④若,不平行,則不可能垂直于同一平面

其中真命題的個(gè)數(shù)為(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】謝爾賓斯基三角形(Sierpinskitriangle)是一種分形幾何圖形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出,它是一個(gè)自相似的例子,其構(gòu)造方法是:

1)取一個(gè)實(shí)心的等邊三角形(圖1);

2)沿三邊中點(diǎn)的連線,將它分成四個(gè)小三角形;

3)挖去中間的那一個(gè)小三角形(圖2);

4)對(duì)其余三個(gè)小三角形重復(fù)(1)(2)(3)(4)(圖3.

制作出來(lái)的圖形如圖4,圖5,….

若圖3(陰影部分)的面積為1,則圖5(陰影部分)的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職稱(chēng)晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專(zhuān)業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗(滿分100分).

1)求圖中的值;

2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為晉級(jí)成功與性別有關(guān)?

晉級(jí)成功

晉級(jí)失敗

合計(jì)

16

50

合計(jì)

(參考公式:,其中

0.40

0.025

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

3)將頻率視為概率,從本次考試80分以上的所有人員中,按分層抽樣的方式抽取5個(gè)人的樣本;現(xiàn)從5人樣本中隨機(jī)選取2人,求選取的2人恰好都來(lái)自區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(卷號(hào))2040818101747712

(題號(hào))2050752239689728

(題文)

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)直線與曲線交于兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是圓內(nèi)接四邊形,,,.

1)求證:平面平面

2)設(shè)線段的中點(diǎn)為,線段的中點(diǎn)為,且在線段上運(yùn)動(dòng),求直線與平面所成角的正弦值的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案