(本題滿分16分)
已知圓:,設點是直線:上的兩點,它們的橫坐標分別
是,點的縱坐標為且點在線段上,過點作圓的切線,切點為
(1)若,,求直線的方程;
(2)經過三點的圓的圓心是,
①將表示成的函數,并寫出定義域.
②求線段長的最小值
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
已知關于的方程:.
(1)當為何值時,方程C表示圓。
(2)若圓C與直線相交于M,N兩點,且|MN|=,求的值。
(3)在(2)條件下,是否存在直線,使得圓上有四點到直線的距離為,若存在,求出的范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分10分)已知線段的端點的坐標為,端點在
圓:上運動。
(1)求線段的中點的軌跡方程;
(2)過點的直線與圓有兩個交點,弦的長為,求直線的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)過點Q 作圓C:的切線,切點為D,且QD=4.
(1)求的值;
(2)設P是圓C上位于第一象限內的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y 軸于點B,設,求的最小值(O為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
設橢圓:的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(1)求橢圓的離心率;
(2)若過、、三點的圓恰好與直線:相切,求橢圓的
方程;
(3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于、兩
點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,
如果存在,求出的取值范圍,如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com