(本題滿分10分)已知線段的端點(diǎn)的坐標(biāo)為,端點(diǎn)
:上運(yùn)動(dòng)。
(1)求線段的中點(diǎn)的軌跡方程;
(2)過(guò)點(diǎn)的直線與圓有兩個(gè)交點(diǎn),弦的長(zhǎng)為,求直線的方程。

(1)  (2)

解析試題分析:(1)設(shè)坐標(biāo)為, 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/27/c/t46qn4.png" style="vertical-align:middle;" />的坐標(biāo)為,所以的坐標(biāo)為,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ff/2/kkiet1.png" style="vertical-align:middle;" />在圓上,所以有,
為所求的軌跡方程.                              ……4分
(2)
;             ……5分
 ……6分
由點(diǎn)到直線的距離公式                                   ……8分

.                       ……10分
考點(diǎn):本小題主要考查中點(diǎn)坐標(biāo)公式、點(diǎn)到直線的距離公式和弦長(zhǎng)公式等公式的應(yīng)用和相關(guān)點(diǎn)法求軌跡方程,考查學(xué)生分析問(wèn)題、解決問(wèn)題的能力和運(yùn)算求解能力.
點(diǎn)評(píng):設(shè)直線方程通常設(shè)點(diǎn)斜式,而設(shè)點(diǎn)斜式時(shí)一定要考慮直線斜率存在與不存在兩種情況,不如可能會(huì)漏掉一個(gè)解.  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).若直線與圓相交于,兩點(diǎn),且.
(Ⅰ)求圓的直角坐標(biāo)方程,并求出圓心坐標(biāo)和半徑;
(Ⅱ)求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分6分)
已知直線截圓心在點(diǎn)的圓所得弦長(zhǎng)為.
(1)求圓的方程;
(2)求過(guò)點(diǎn)的圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|.

(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過(guò)點(diǎn)(3,0)且斜率為的直線被曲線C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)已知,圓C:,直線.
(1) 當(dāng)a為何值時(shí),直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點(diǎn),且時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分16分)
已知圓,設(shè)點(diǎn)是直線上的兩點(diǎn),它們的橫坐標(biāo)分別
,點(diǎn)的縱坐標(biāo)為且點(diǎn)在線段上,過(guò)點(diǎn)作圓的切線,切點(diǎn)為
(1)若,求直線的方程;
(2)經(jīng)過(guò)三點(diǎn)的圓的圓心是,
①將表示成的函數(shù),并寫(xiě)出定義域.
②求線段長(zhǎng)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)已知橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C的方程為,點(diǎn)A,直線
(1)求與圓C相切,且與直線垂直的直線方程;
(2)O為坐標(biāo)原點(diǎn),在直線OA上是否存在異于A點(diǎn)的B點(diǎn),使得為常數(shù),若存在,求出點(diǎn)B,不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求經(jīng)過(guò)兩點(diǎn)且圓心在上的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案