如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P為“C1—C2型點(diǎn)”.

(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.
(1) C1的左焦點(diǎn)為“C1-C2型點(diǎn)”,且直線可以為;
(2)直線至多與曲線C1和C2中的一條有交點(diǎn),即原點(diǎn)不是“C1-C2型點(diǎn)”.
(3)直線若與圓內(nèi)有交點(diǎn),則不可能同時(shí)與曲線C1和C2有交點(diǎn),
即圓內(nèi)的點(diǎn)都不是“C1-C2型點(diǎn)”.

試題分析:
思路分析:(1)緊扣“C1-C2型點(diǎn)”的定義,確定C1的左焦點(diǎn)為“C1-C2型點(diǎn)”,且直線可以為;
(2)通過研究直線與C2有交點(diǎn)的條件,分別得到 ,不可能同時(shí)成立,得到結(jié)論:直線至多與曲線C1和C2中的一條有交點(diǎn),即原點(diǎn)不是“C1-C2型點(diǎn)”.
(3)顯然過圓內(nèi)一點(diǎn)的直線若與曲線C1有交點(diǎn),則斜率必存在;
根據(jù)對(duì)稱性,不妨設(shè)直線斜率存在且與曲線C2交于點(diǎn),則
 
根據(jù)直線與圓內(nèi)部有交點(diǎn),得到 
化簡得,............①
再根據(jù)直線與曲線C1有交點(diǎn), 由方程組
 
化簡得,.....②
由①②得, 
但此時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240204007241227.png" style="vertical-align:middle;" />,即①式不成立;
當(dāng)時(shí),①式也不成立 ,得出結(jié)論。
解:(1)C1的左焦點(diǎn)為,過F的直線與C1交于,與C2交于,故C1的左焦點(diǎn)為“C1-C2型點(diǎn)”,且直線可以為;
(2)直線與C2有交點(diǎn),
,若方程組有解,則必須;
直線與C2有交點(diǎn),則
,若方程組有解,則必須 
故直線至多與曲線C1和C2中的一條有交點(diǎn),即原點(diǎn)不是“C1-C2型點(diǎn)”.
(3)顯然過圓內(nèi)一點(diǎn)的直線若與曲線C1有交點(diǎn),則斜率必存在;
根據(jù)對(duì)稱性,不妨設(shè)直線斜率存在且與曲線C2交于點(diǎn),則
 
直線與圓內(nèi)部有交點(diǎn),故 
化簡得,............①
若直線與曲線C1有交點(diǎn),則
 
 
化簡得,.....②
由①②得, 
但此時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240204007241227.png" style="vertical-align:middle;" />,即①式不成立;
當(dāng)時(shí),①式也不成立
綜上,直線若與圓內(nèi)有交點(diǎn),則不可能同時(shí)與曲線C1和C2有交點(diǎn),
即圓內(nèi)的點(diǎn)都不是“C1-C2型點(diǎn)”.
點(diǎn)評(píng):難題,本題綜合性較強(qiáng),綜合考查直線與圓、雙曲線的位置關(guān)系以及不等式問題。從思路方面講,要緊扣“C1-C2型點(diǎn)”的定義,研究方程組解的情況。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,以為圓心的圓相切于點(diǎn),的縱坐標(biāo)為,是圓軸除外的另一個(gè)交點(diǎn).
(I)求拋物線與圓的方程;
( II)已知直線交于兩點(diǎn),交于點(diǎn),且, 求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左右頂點(diǎn)分別為,離心率.過該橢圓上任一點(diǎn)軸,垂足為,點(diǎn)的延長線上,且
(1)求橢圓的方程;
(2)求動(dòng)點(diǎn)的軌跡的方程;
(3)設(shè)直線點(diǎn)不同于)與直線交于點(diǎn),為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試問:當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)、為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)在此雙曲線上,,如果此雙曲線的離心率等于,那么點(diǎn)軸的距離等于               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(5分)拋物線y2=4x的焦點(diǎn)到雙曲線的漸近線的距離是( 。
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x =﹣2,則拋物線的方程是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知,直線, 動(dòng)點(diǎn)的距離是它到定直線距離的倍. 設(shè)動(dòng)點(diǎn)的軌跡曲線為
(1)求曲線的軌跡方程.
(2)設(shè)點(diǎn), 若直線為曲線的任意一條切線,且點(diǎn)、的距離分別為,試判斷是否為常數(shù),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線為常數(shù)),為其焦點(diǎn).

(1)寫出焦點(diǎn)的坐標(biāo);
(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),且,求直線的斜率;
(3)若線段是過拋物線焦點(diǎn)的兩條動(dòng)弦,且滿足,如圖所示.求四邊形面積的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案