設(shè)為雙曲線的兩個焦點,點在此雙曲線上,,如果此雙曲線的離心率等于,那么點軸的距離等于               

試題分析:解法一: ∵ 的離心率等于,
.
.
,
.
.
∵點在雙曲線上,
.
.
.
.
設(shè)點軸的距離等于,則.
.
解法二(方程思想):∵,∴,.
的離心率等于,∴,,.
∴,雙曲線方程為.
設(shè),則    ①
   ②
解得,從而點軸的距離等于.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點在坐標原點,焦點在軸上,且過點.

(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,經(jīng)過點的動直線,與橢圓)相交于,兩點. 當軸時,,當軸時,
(Ⅰ)求橢圓的方程;
(Ⅱ)若的中點為,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知曲線,曲線,P是平面上一點,若存在過點P的直線與都有公共點,則稱P為“C1—C2型點”.

(1)在正確證明的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線有公共點,求證,進而證明原點不是“C1—C2型點”;
(3)求證:圓內(nèi)的點都不是“C1—C2型點”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過直線上一點作圓的切線,若關(guān)于直線對稱,則點到圓心的距離為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,已知,,,其中.設(shè)直線的交點為,求動點的軌跡的參數(shù)方程(以為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直接坐標系中,直線的方程為,曲線的參數(shù)方程為為參數(shù)).
(I)已知在極坐標(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,點的極坐標為(4,),判斷點與直線的位置關(guān)系;
(II)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2= 2x的準線方程是(   )
A.y=B.y=-C.x=D.x=-

查看答案和解析>>

同步練習(xí)冊答案