【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為,離心率為,橢圓的右頂點(diǎn)為.
(1)求該橢圓的方程;
(2)過點(diǎn)作直線交橢圓于兩個不同點(diǎn),求證:直線的斜率之和為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx﹣1當(dāng)x=﹣2時有極值,且在x=﹣1處的切線的斜率為﹣3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[﹣1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為棱AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1E⊥C1F,A1C1⊥B1C1.
(1)求證:DE∥平面A1C1F;
(2)求證:B1E⊥平面A1C1F
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題方程有兩個不等的實根;命題方程無實根,若“”為真,“”為假,則實數(shù)的取值范圍為___________.(寫成區(qū)間的形式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)在拋物線上,過點(diǎn)作垂直于軸,垂足為,設(shè).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)若點(diǎn)是上的動點(diǎn),過點(diǎn)作拋物線:的兩條切線,切點(diǎn)分別為,設(shè)點(diǎn)到直線的距離為,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個短軸端點(diǎn)恰好是拋物線的焦點(diǎn).
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點(diǎn),是橢圓上位于直線兩側(cè)的動點(diǎn).
①若直線的斜率為,求四邊形面積的最大值;
②當(dāng)運(yùn)動時,滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線的準(zhǔn)線與軸交于橢圓的右焦點(diǎn)為的左焦點(diǎn).橢圓的離心率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長其交于點(diǎn), 為上一動點(diǎn),且在之間移動.
(1)當(dāng)取最小值時,求和的方程;
(2)若的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)面積取最大值時,求面積最大值以及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間 上的圖象,為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( )
A.向左平移 個單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變
B.向左平移 個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移 個單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變
D.向左平移 個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com