【題目】已知是各項(xiàng)均為正數(shù)的等比數(shù)列,且滿足,,等差數(shù)列滿足.

(Ⅰ)分別求數(shù)列,的通項(xiàng)公式;

(Ⅱ)記數(shù)列的前項(xiàng)和為,若對任意的,恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)在各項(xiàng)均為正數(shù)的等比數(shù)列中,將已知兩個(gè)關(guān)系式中各項(xiàng)都由等比數(shù)列通項(xiàng)公式轉(zhuǎn)化為首項(xiàng)與公比,進(jìn)而求得首項(xiàng)與公比,并寫出該數(shù)列通項(xiàng)公式;在等差數(shù)列中,由等差數(shù)列性質(zhì)求得公差,進(jìn)而求得首項(xiàng),即可寫出該數(shù)列通項(xiàng)公式;

(Ⅱ)由(Ⅰ)求得數(shù)列的前項(xiàng)和,將其帶入已知不等式,進(jìn)而參變分離轉(zhuǎn)化不等式,再令,分析其數(shù)列的增減性,求得最值,即可求得答案.

(Ⅰ)設(shè)正數(shù)等比數(shù)列的公比為,由題意得

,∴

又由題意得,∴,且

;

(Ⅱ)由(Ⅰ)得數(shù)列的前項(xiàng)和

恒成立,即恒成立,

,,

當(dāng)時(shí),,數(shù)列為遞增數(shù)列;當(dāng)時(shí),,數(shù)列為遞減數(shù)列,

,故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過a的部分按平價(jià)收費(fèi),超出a的部分按議價(jià)收費(fèi)為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,分組的頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計(jì)該市每戶居民月平均用電量的值;

用頻率估計(jì)概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布

估計(jì)該市居民月平均用電量介于度之間的概率;

利用的結(jié)論,從該市所有居民中隨機(jī)抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率相等.橢圓的右焦點(diǎn)為F,過點(diǎn)F的直線與橢圓交于A,B兩點(diǎn),射線與橢圓交于點(diǎn)C,橢圓的右頂點(diǎn)為D

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若的面積為,求直線的方程;

3)若,求證:四邊形是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩種產(chǎn)品的質(zhì)量,從中分別隨機(jī)抽取了10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測量數(shù)據(jù)的莖葉圖.規(guī)定:當(dāng)產(chǎn)品中的此中元素的含量不小于18毫克時(shí),該產(chǎn)品為優(yōu)等品.

(1)試用樣品數(shù)據(jù)估計(jì)甲、乙兩種產(chǎn)品的優(yōu)等品率;

(2)從乙產(chǎn)品抽取的10件樣品中隨機(jī)抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;

(3)從甲產(chǎn)品抽取的10件樣品中有放回地隨機(jī)抽取3件,也從乙產(chǎn)品抽取的10件樣品中有放回地隨機(jī)抽取3件;抽到的優(yōu)等品中,記“甲產(chǎn)品恰比乙產(chǎn)品多2件”為事件,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形中,E,F,中點(diǎn),,,,將沿對角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是(

A.平面B.異面直線所成的角為90°

C.異面直線所成的角為60°D.直線與平面所成的角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情的控制需要根據(jù)大數(shù)據(jù)進(jìn)行分析,并有針對性的采取措施.下圖是甲、乙兩個(gè)省份從27日到213日一周內(nèi)的新增新冠肺炎確診人數(shù)的折線圖.根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對,下列說法錯(cuò)誤的是(

A.27日到213日甲省的平均新增新冠肺炎確診人數(shù)低于乙省

B.27日到213日甲省的單日新增新冠肺炎確診人數(shù)最大值小于乙省

C.27日到213日乙省相對甲省的新增新冠甲省肺炎確診人數(shù)的波動(dòng)大

D.后四日(210日至13日)乙省每日新增新冠肺炎確診人數(shù)均比甲省多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線,過點(diǎn)的直線交拋物線于,,兩點(diǎn).當(dāng)垂直于軸時(shí),的面積為.

0

1)求拋物線的方程:

2)設(shè)線段的垂直平分線交軸于點(diǎn).

①證明:為定值:

②若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的普通方程為,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(I)求的參數(shù)方程與的直角坐標(biāo)方程;

(II)射線交于異于極點(diǎn)的點(diǎn),與的交點(diǎn)為,求.

查看答案和解析>>

同步練習(xí)冊答案