將連續(xù)整數(shù)1,2,…,25填入如圖所示的5行5列的表格中,使每一行的數(shù)從左到右都成遞增數(shù)列,則第三列各數(shù)之和的最小值為    ,最大值為    .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知,不等式,,,…,可推廣為,則等于           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此規(guī)律,第五個(gè)等式應(yīng)為                       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

科拉茨是德國數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:
(1)如果,則按照上述規(guī)則施行變換后的第8項(xiàng)為           
(2)如果對正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

觀察下列事實(shí)|x|+|y|=1的不同整數(shù)解(x,y)的個(gè)數(shù)為4 , |x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8, |x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12 ….則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)P是邊長為a的正△ABC內(nèi)的一點(diǎn),P點(diǎn)到三邊的距離分別為h1、h2、h3,則h1+h2+h3=a;類比到空間,設(shè)P是棱長為a的空間正四面體ABCD內(nèi)的一點(diǎn),則P點(diǎn)到四個(gè)面的距離之和h1+h2+h3+h4=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則S4,S8-S4,S12-S8,S16-S12成等差數(shù)列,類比以上結(jié)論有:設(shè)等比數(shù)列{bn}的前n項(xiàng)積為Tn,則T4,    ,    ,成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)n為正整數(shù),f(n)=1++…+,經(jīng)計(jì)算得f(2)=,f(4)>2,f(8)> f(16)>3,f(32)> ,觀察上述結(jié)果,對任意正整數(shù)n,可推測出一般結(jié)論是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知Sk=1k+2k+3k+…+nk,當(dāng)k=1,2,3,…時(shí),觀察下列等式:
S1n2n,
S2n3n2n,
S3n4n3n2
S4n5n4n3n,
S5=An6n5n4+Bn2,…
可以推測,A-B=________.

查看答案和解析>>

同步練習(xí)冊答案