若函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=lnx+2x-6,
(1)求f(x)的解析式;
(2)試判斷f(x)的零點個數(shù).
分析:(1)利用奇函數(shù)的性質(zhì)f(x)=-f(-x),f(0)=0即可得出;
(2)當x>0時,函數(shù)f(x)=lnx+2x-6單調(diào)遞增,且f(2)<0,f(3)>0,利用函數(shù)零點判定定理即可得出.再利用奇函數(shù)的性質(zhì)即可得出當x<0時零點的個數(shù),進而得到函數(shù)f(x)零點的個數(shù).
解答:解:(1)設x<0,則-x>0.
∴f(x)=-f(-x)=-[ln(-x)-2x-6]=-ln(-x)+2x+6.
又f(0)=0.
∴f(x)=
lnx+2x-6,x>0
0,x=0
-ln(-x)+2x+6,x<0

(2)∵當x>0時,函數(shù)f(x)=lnx+2x-6單調(diào)遞增,
且f(2)=ln2+2×2-6=ln2-2<0,f(3)=ln3+6-6=ln3>0,
∴函數(shù)f(x)在(0,+∞)上存在唯一零點.
同理:當x<0時,在(-∞,0)上也存在唯一零點.
綜上可知:f(x)的零點個數(shù)為3.
點評:本題考查了函數(shù)的奇偶性、函數(shù)的零點判定定理,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)為定義在R上的奇函數(shù),且x∈(0,+∞)時,f(x)=lg(x+1),求f(x)的表達式,并畫出示意圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f (x)為定義在區(qū)間[-6,6]上的偶函數(shù),且f(3)>f(1),則下列各式一定成立的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)為定義在[0,+∞)上的增函數(shù),定義在R上的函數(shù)g(x)滿足g(x)=f(|x|),則不等式g(
2x
)>g(1)
的解集為
(-2,0)∪(0,2)
(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)為定義在R上的奇函數(shù),且x∈(0,+∞)時,f(x)=2x
(1)求f(x)的表達式;
(2)在所給的坐標系中直接畫出函數(shù)f(x)圖象.(不必列表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•煙臺二模)若函數(shù)f(x)為定義在R上的奇函數(shù),當x>0時,f(x)=2x-1-3,則不等式f(x)>1的解集為
(-2,0)∪(3,+∞)
(-2,0)∪(3,+∞)

查看答案和解析>>

同步練習冊答案