【題目】下邊的折線圖給出的是甲、乙兩只股票在某年中每月的收盤價格,已知股票甲的極差是6.88元,標準差為2.04元;股票乙的極差為27.47元,標準差為9.63元,根據(jù)這兩只股票在這一年中的波動程度,給出下列結論:①股票甲在這一年中波動相對較小,表現(xiàn)的更加穩(wěn)定;②購買股票乙風險高但可能獲得高回報;③股票甲的走勢相對平穩(wěn),股票乙的股價波動較大;④兩只般票在全年都處于上升趨勢.其中正確結論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

通過標準差的比較,得出兩只股票的穩(wěn)定性,通過極差的比較,得出風險和回報,再根據(jù)折線圖得出股票的上升和下跌趨勢,可分析出答案.

由題可知,甲的標準差為2.04元,乙的標準差為9.63元,可知股票甲在這一年中波動相對較小,表現(xiàn)的更加穩(wěn)定,故①正確;

甲的極差是6.88元,乙的極差為27.47元,可知購買股票乙風險高但可能獲得高回報,故②正確;

通過折線圖可知股票甲的走勢相對平穩(wěn),股票乙的股價波動較大,故③正確;

通過折線圖可得乙再6月到8月明顯是下降趨勢,故④錯誤

故選C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設點,定義,其中為坐標原點,對于下列結論:

符合的點的軌跡圍成的圖形面積為8;

設點是直線:上任意一點,則;

設點是直線:上任意一點,則使得“最小的點有無數(shù)個”的必要條件是;

設點是圓上任意一點,則

其中正確的結論序號為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為,離心率為,點在橢圓上,且的面積的最大值為.

(1)求橢圓的方程;

(2)已知直線與橢圓交于不同的兩點,若在軸上存在點,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某運動會將在深圳舉行,組委會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:),身高在以上(包括)定義為“高個子”,身高在以下(不包括)定義為“非高個子”.

1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率;

2)若從身高以上(包括)的志愿者中選出男、女各一人,設這2人身高相差),求的分布列和數(shù)學期望(均值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究機構隨機調查了,兩個企業(yè)各100名員工,得到了企業(yè)員工月均收入的頻數(shù)分布表以及企業(yè)員工月均收入的統(tǒng)計圖如下:

企業(yè):

工資

人數(shù)

5

10

20

42

18

3

1

1

企業(yè):

(1)若將頻率視為概率,現(xiàn)從企業(yè)中隨機抽取一名員工,求該員工月均收入不低于5000元的概率;

(2)(i)若從企業(yè)的月均收入在員工中,按分層抽樣的方式抽取7人,而后在此7人中隨機抽取2人,則2人月均收入都不在的概率是多少?

(ii)若你是一名即將就業(yè)的大學生,根據(jù)上述調查結果,并結合統(tǒng)計學相關知識,你會選擇去哪個企業(yè)就業(yè),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圖形ABCDEF,內部連有線段.

1)由點A沿著圖中的線段到達點E的最近路線有多少條?

2)由點A沿著圖中的線段到達點C的最近路線有多少條?

3)求出圖中總計有多少個矩形?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是(

A.展開式中奇數(shù)項的二項式系數(shù)和為256

B.展開式中第6項的系數(shù)最大

C.展開式中存在常數(shù)項

D.展開式中含項的系數(shù)為45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上單調,且函數(shù)的圖象關于直線對稱,若數(shù)列是公差不為0的等差數(shù)列,且,則的前100項的和為( )

A. 300B. 100C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠采用甲、乙兩種不同生產方式生產某零件,現(xiàn)對兩種生產方式所生產的這種零件的產品質量進行對比,其質量按測試指標可劃分為:指標在區(qū)間100的為一等品;指標在區(qū)間的為二等品現(xiàn)分別從甲、乙兩種不同生產方式所生產的零件中,各自隨機抽取100件作為樣本進行檢測,測試指標結果的頻率分布直方圖如圖所示:

若在甲種生產方式生產的這100件零件中按等級,利用分層抽樣的方法抽取10件,再從這10件零件中隨機抽取3件,求至少有1件一等品的概率;

將頻率分布直方圖中的頻率視作概率,用樣本估計總體若從該廠采用乙種生產方式所生產的所有這種零件中隨機抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案