【題目】已知函數(shù)定義域?yàn)?/span>,
(1)求的取值范圍;
(2)若函數(shù)在上的最大值與最小值之積為,求實(shí)數(shù)的值.
【答案】(1);(2).
【解析】
(1)先由題意得到不等式恒成立,分別討論與兩種情況,即可得出結(jié)果;
(2)由(1)的結(jié)果,分和兩種情況,利用函數(shù)單調(diào)性,結(jié)合題中條件,求出最大值與最小值,進(jìn)而可求出結(jié)果.
(1)因?yàn)楹瘮?shù)定義域?yàn)?/span>,
所以不等式恒成立,
當(dāng)時(shí),不等式可化為顯然恒成立;
當(dāng)時(shí),由不等式恒成立,可得,
解得,
綜上所述,的取值范圍是;
(2)由(1)知;
當(dāng)時(shí),不是單調(diào)函數(shù),無最值,不滿足題意;
當(dāng)時(shí),令,,則其對(duì)稱軸為,
所以在上單調(diào)遞減,在上單調(diào)遞增;
所以在上單調(diào)遞減,在上單調(diào)遞增;
因此,
又,,所以,
因?yàn)楹瘮?shù)在上的最大值與最小值之積為,
所以,整理得,解得(舍)或.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,四棱錐的底面為菱形,平面,,
分別為的中點(diǎn),.
(Ⅰ)求證:平面平面.
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市理論預(yù)測(cè)2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬) | 5 | 7 | 8 | 11 | 19 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2) 據(jù)此估計(jì)2015年該城市人口總數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=3sin(4x+ )圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向右平移 個(gè)單位長度,得到函數(shù)y=g(x)的圖象,則y=g(x)圖象的一條對(duì)稱軸是( )
A.x=
B.x=
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面推理過程中使用了類比推理方法,其中推理正確的是( )
A. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條直線,若,則
B. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條向量,若,則
C. 在平面內(nèi),若兩個(gè)正三角形的邊長的比為,則它們的面積比為.類比推出:在空間中,若兩個(gè)正四面體的棱長的比為,則它們的體積比為
D. 若,則復(fù)數(shù).類比推理:“若,則”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcos(x+ )+ .
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,且關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 f(x)= sin2x﹣2sin2x,
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若x∈[﹣ , ],求f(x)的最大值及取得最大值時(shí)對(duì)應(yīng)的x的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com