【題目】某公司印制了一批文化衫,每件文化衫可有紅、黃、藍三種不同的顏色和四種不同的圖案.現(xiàn)將這批文化衫分發(fā)給名新員工,每名員工恰好分到圖案不同的4件.試求的最小值,使得總存在兩個人,他們所分到的某兩種圖案的4件文化衫的顏色全部相同.
【答案】19
【解析】
的最小值為19.
當時,表1所示的答題情形不符合要求.
表1
p> | ||||||||||||||||||
(1) | ||||||||||||||||||
(2) | ||||||||||||||||||
(3) | ||||||||||||||||||
(4) |
【注】表l中(1)、(2)、(3)、(4)為圖案,為員工,、、分別表示紅、黃、藍三種顏色.
下面證明:當時,必存在兩個人滿足要求.
事實上,把所有人的文化衫的顏色和圖案如上制成表格,若存在兩個人的某兩種圖案的4件文化衫的顏色全部相同,則必存在一個矩形子表,這個子表四個角的方格中的字母(顏色)相同.
若對于某個顏色(以紅色為例),設分到件紅色文化衫.則當時(約定當時,),必存在四個角都是的矩形.這是因為,考慮每一列兩個構(gòu)成的“對子”,一共只有如表2所示的6種.當時,必有兩列會出現(xiàn)相同的對子,從而,必有四個角都是的矩形.
表2
當時,任取其中19個人,他們的所有文化衫的顏色中,至少有一種顏色出現(xiàn)了不少于(次),不妨設為紅色.
設其中
由調(diào)整法易知,當取最小值時,對任意,有.
注意到,則在中有19個1和7個2時,取得最小值.
這表明,當時,必存在四個角都是同一個字母的矩形子表.
綜上,所求的最小值為19.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤(a>0)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若不等式在上恒成立,求a的取值范圍;
(2)若函數(shù)恰好有三個零點,求b的值及該函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學生中抽取100人做調(diào)查,得到列聯(lián)表,且已知在100個人中隨機抽取1人,抽到喜歡游泳的學生的概率為.
(1)請完成列聯(lián)表;
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 40 | ||
女生 | 30 | ||
合計 | 100 |
(2)根據(jù)列聯(lián)表,是否有99.9%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由.
附:參考公式與臨界值表如下:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(Ⅰ)若是函數(shù)的極值點,和是函數(shù)的兩個不同零點,且,,求;
(Ⅱ)若對任意,都存在(為自然對數(shù)的底數(shù)),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的左焦點為,且點在C上.
求C的方程;
設點P關(guān)于x軸的對稱點為點不經(jīng)過P點且斜率為k的直線l與C交于A,B兩點,直線PA,PB分別與x軸交于點M,N,若,求k.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,當時,求的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)有唯一的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù),,以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com