已知R,函數(shù)e.
(1)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)存在極大值,并記為,求的表達(dá)式;
(3)當(dāng)時(shí),求證:.
(1);(2);(3)詳見試題解析.
解析試題分析:(1)令得,∴.再利用求實(shí)數(shù)的取值范圍;(2)先解,得可能的極值點(diǎn)或,再分討論得函數(shù)極大值的表達(dá)式;(3)當(dāng)時(shí),,要證 即證,亦即證,構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式.
試題解析:(1)令得,∴. 1分
∵函數(shù)沒有零點(diǎn),∴,∴. 3分
(2),令,得或. 4分
當(dāng)時(shí),則,此時(shí)隨變化,的變化情況如下表:
當(dāng)時(shí),取得極大值; 6分
當(dāng)時(shí),在上為增函數(shù),∴無極大值. 7分
當(dāng)時(shí),則,此時(shí)隨變化,的變化情況如下表:
當(dāng)時(shí),取得極大值,∴ 9分
(3)證明:當(dāng)時(shí), 10分
要證 即證,即證 11分
令,則. 12分
∴當(dāng)時(shí),為增函數(shù);當(dāng)時(shí)為減函數(shù),時(shí)取最小值,,∴.
∴,∴. 14分
考點(diǎn):1.函數(shù)的零點(diǎn);2.函數(shù)的導(dǎo)數(shù)與極值;3.不等式的證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)求f(x)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若存在使得對任意的恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若且對于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(Ⅰ)的圖象關(guān)于原點(diǎn)對稱,當(dāng)時(shí),的極小值為,求的解析式。
(Ⅱ)若,是上的單調(diào)函數(shù),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),對所有的都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(是常數(shù))在處的切線方程為,且.
(Ⅰ)求常數(shù)的值;
(Ⅱ)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,且在點(diǎn)(1,)處的切線方程為。
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù),若方程有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com