【題目】如圖,在四棱錐中,底面,底面為梯形,,,且

若點(diǎn)上一點(diǎn)且,證明:平面;

二面角的大小;

在線(xiàn)段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由

【答案】見(jiàn)解析;;

【解析】

試題分析:要證線(xiàn)面平行,就要證線(xiàn)線(xiàn)平行,由線(xiàn)面平行的性質(zhì)定理知平行線(xiàn)過(guò)的平面與平面的交線(xiàn),由已知過(guò)點(diǎn),交,連接,就是要找的平行線(xiàn);求二面角,由于圖中已知兩兩垂直,因此以它們?yōu)樽鴺?biāo)軸建立空間直角坐標(biāo)系,可用向量法求得二面角,只要求得兩個(gè)面的法向量,由法向量的夾角與二面角相等或互補(bǔ)可得需確定二面角是銳二面角還是鈍二面角;3有了第2小題的空間直角坐標(biāo)系,因此解決此題時(shí),假設(shè)存在點(diǎn),設(shè),由求得即可

試題解析:過(guò)點(diǎn),交,連接,

因?yàn)?/span>,所以

,,所以

所以為平行四邊形, 所以

平面,平面,一個(gè)都沒(méi)寫(xiě)的,則這1分不給

所以平面

因?yàn)樘菪?/span>中,,,所以

因?yàn)?/span>平面,所以,

如圖,以為原點(diǎn),所在直線(xiàn)為軸建立空間直角坐標(biāo)系,

所以

設(shè)平面的一個(gè)法向量為,平面的一個(gè)法向量為,

因?yàn)?/span>

所以,即,

得到,

同理可得,

所以,

因?yàn)槎娼?/span>為銳角,

所以二面角

假設(shè)存在點(diǎn),設(shè),

所以,

所以,解得,

所以存在點(diǎn),且

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了展示中華漢字的無(wú)窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開(kāi)展《中國(guó)漢字聽(tīng)寫(xiě)大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績(jī)畫(huà)出莖葉圖,如圖所示,甲的成績(jī)中有一個(gè)數(shù)的個(gè)位數(shù)字模糊,在莖葉圖中用表示.(把頻率當(dāng)作概率).

(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

(2)假設(shè)數(shù)字的取值是隨機(jī)的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇函數(shù).

(1)求的值;

(2)求函數(shù)的最小值;

(3)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x+log2x+b在區(qū)間( ,4)上有零點(diǎn),則實(shí)數(shù)b的取值范圍是(
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè):實(shí)數(shù)滿(mǎn)足,其中;

:實(shí)數(shù)滿(mǎn)足.

Ⅰ)若,為真,求實(shí)數(shù)的取值范圍;

Ⅱ)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn , a1= 且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan , 求數(shù)列{bn}的前項(xiàng)n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿(mǎn)足成立的的集合記為,滿(mǎn)足Q成立的的集合記為,求A∩(CRB)(為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)班級(jí)共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表。

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

總計(jì)

105

已知從甲、乙兩個(gè)班級(jí)中隨機(jī)抽取1名學(xué)生,其成績(jī)?yōu)閮?yōu)秀的概率為.

(1)請(qǐng)完成上面的列聯(lián)表;

(2)能否有把握認(rèn)為成績(jī)與班級(jí)有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知4sin2
(1)求角C的大。
(2)若c= ,求a﹣b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案