如圖所示,B(– c,0),C(c,0),AH⊥BC,垂足為H,且
(1)若= 0,求以B、C為焦點并且經(jīng)過點A的橢圓的離心率;
(2)D分有向線段的比為,A、D同在以B、C為焦點的橢圓上,當(dāng) ―5≤ 時,求橢圓的離心率e的取值范圍.
(1). 
(2)≤e≤
(1)因為,所以H ,又因為AH⊥BC,所以設(shè)A,由 得 即     3分  
所以|AB| = ,|AC | =
橢圓長軸2a =" |AB|" + |AC| = (+ 1)c,    所以,. 
(2)設(shè)D (x1,y1),因為D分有向線段的比為,所以,,  
 設(shè)橢圓方程為=" 1" (a > b > 0),將A、D點坐標代入橢圓方程得 .①
  ……………………………..   ②
由①得,代入②并整理得,   
因為 – 5≤,所以,又0 < e < 1,所以≤e≤
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,過橢圓的左焦點x軸的垂線交橢圓于點P,點A和點B分別為橢圓的右頂點和上頂點,OPAB
(1)求橢圓的離心率e(2)過右焦點作一條弦QR,使QRAB.若△的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是橢圓上的一點,是橢圓的左焦點,且,則點到該橢圓左準線的距離為____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,一個頂點A(0,-1),且右焦點到右準線的距離為.
(1)求橢圓的方程.
(2)試問是否能找到一條斜率為k(k≠0)的直線l,使l與橢圓交于不同兩點M、N且滿足|AM|=|AN|?若這樣的直線存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓ax2+by2=1與直線x+y=1相交于A、B兩點,且|AB|=2.又AB的中點M與橢圓中心連線的斜率為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定四條曲線:①x2+y2=;②+=1;?③x2+=1;④+y2=1.其中與直線x+y-5=0僅有一個交點的曲線是(   )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,且經(jīng)過點P(3,0),a=3b,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

α∈(0,),方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

F1、F2是橢圓+y2=1的左、右焦點,點P在橢圓上運動,則|PF1|·|PF2|的最大值是_________________.

查看答案和解析>>

同步練習(xí)冊答案