【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),如表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如表1
為了研究計(jì)算方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,令,得到表2:
(1)求:關(guān)于t的線性回歸方程;
(2)通過(guò)(1)中的方程,求出y關(guān)于的回歸方程;
(3)用所求回歸方程預(yù)測(cè)到2019年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
附:對(duì)于線性回歸方程,其中,.
【答案】(1);(2);(3)該地儲(chǔ)蓄存款額可達(dá)14.4千億
【解析】
(1)由表中數(shù)據(jù)計(jì)算平均數(shù)和回歸系數(shù),即可寫(xiě)出關(guān)于的線性回歸方程;
(2)把,代入中得到關(guān)于的回歸方程;
(3)將代入(2)中的方程,計(jì)算可得.
(1)由表中數(shù)據(jù),計(jì)算,
,
所以,
所以關(guān)于t的線性回歸方程為;
(2)把,代入中,
得到:,
即y關(guān)于x的回歸方程是;
(3)由(2)知,當(dāng)時(shí),,
即預(yù)測(cè)到2019年年底,該地儲(chǔ)蓄存款額可達(dá)14.4千億.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某溫室大棚規(guī)定,一天中,從中午12點(diǎn)到第二天上午8點(diǎn)為保溫時(shí)段,其余4小時(shí)為工作作業(yè)時(shí)段,從中午12點(diǎn)連續(xù)測(cè)量20小時(shí),得出此溫室大棚的溫度y(單位:度)與時(shí)間t(單位:小時(shí),)近似地滿足函數(shù)關(guān)系,其中,b為大棚內(nèi)一天中保溫時(shí)段的通風(fēng)量。
(1)若一天中保溫時(shí)段的通風(fēng)量保持100個(gè)單位不變,求大棚一天中保溫時(shí)段的最低溫度(精確到0.1℃);
(2)若要保持一天中保溫時(shí)段的最低溫度不小于17℃,求大棚一天中保溫時(shí)段通風(fēng)量的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列1,1,1,2,2,1,2,4,3,1,2,4,8,4,1,2,4,8,16,5,…,其中第一項(xiàng)是,第二項(xiàng)是1,接著兩項(xiàng)為,,接著下一項(xiàng)是2,接著三項(xiàng)是,,,接著下一項(xiàng)是3,依此類推.記該數(shù)列的前項(xiàng)和為,則滿足的最小的正整數(shù)的值為( )
A.65B.67C.75D.77
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷(xiāo)售商訂購(gòu),規(guī)定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)不會(huì)超過(guò)600件.
(1)設(shè)一次訂購(gòu)件,服裝的實(shí)際出廠單價(jià)為元,寫(xiě)出函數(shù)的表達(dá)式;
(2)當(dāng)銷(xiāo)售商一次訂購(gòu)多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,,是的中點(diǎn).
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點(diǎn),交曲線于,兩點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略的不斷深入實(shí)施,高新技術(shù)企業(yè)在科技創(chuàng)新和經(jīng)濟(jì)發(fā)展中的帶動(dòng)作用日益凸顯,某能源科學(xué)技術(shù)開(kāi)發(fā)中心擬投資開(kāi)發(fā)某新型能源產(chǎn)品,估計(jì)能獲得萬(wàn)元的投資收益,現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)議案:獎(jiǎng)金(單位:萬(wàn)元)隨投資收益(單位:萬(wàn)元)的增加而增加,獎(jiǎng)金不超過(guò)萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的.(即:設(shè)獎(jiǎng)勵(lì)方案函數(shù)模擬為時(shí),則公司對(duì)函數(shù)模型的基本要求是:當(dāng)時(shí),①是增函數(shù);②恒成立;③恒成立.)
(1)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(I);(II).試分析這兩個(gè)函數(shù)模型是否符合公司要求?
(2)已知函數(shù)符合公司獎(jiǎng)勵(lì)方案函數(shù)模型要求,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績(jī)?cè)?.0米 (四舍五入,精確到0.1米) 以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫(huà)出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30 ,第6小組的頻數(shù)是7 .
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記表示兩人中進(jìn)入決賽的人數(shù),求的分布列及數(shù)學(xué)期望;
(Ⅲ) 經(jīng)過(guò)多次測(cè)試后發(fā)現(xiàn),甲成績(jī)均勻分布在8~10米之間,乙成績(jī)均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列的前項(xiàng)和為,求的取值范圍;
(3)若,從數(shù)列中抽出部分項(xiàng)(奇數(shù)項(xiàng)與偶數(shù)項(xiàng)均不少于兩項(xiàng)),將抽出的項(xiàng)按照某一順序排列后構(gòu)成等差數(shù)列.當(dāng)?shù)炔顢?shù)列的項(xiàng)數(shù)最大時(shí),求所有滿足條件的等差數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com