【題目】如圖,在四面體中,,.

(1)證明:平面平面

(2)求直線與平面所成角的正弦值.

【答案】(1)詳見解析;(2).

【解析】

(1)的中點,連接,.易知,從而平面,故平面平面;(2)以為原點,,,分別為軸、軸、軸、建立空間直角坐標系.求出直線的方向向量,平面的法向量,代入公式即可得到直線與平面所成角的正弦值.

(1)證明:設的中點,連接,.

的中點,

∴在中,,即為等邊三角形,

,∴.

中,,,

,且,

于是,可知.

,∴平面

平面,∴平面平面.

(2)解:由(1)知,,,兩兩垂直,以為原點,,,分別為軸、軸、軸、建立空間直角坐標系.

,,,,

設平面的法向量,,

,令,得,又.

設直線與平面所成角為,

,即直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,在區(qū)間上存在三個不同的實數(shù)使得以為邊長的三角形是直角三角形,則的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校6個學生的數(shù)學和物理成績如下表:

學生的編號

1

2

3

4

5

6

數(shù)學

89

87

79

81

78

90

物理

79

75

77

73

72

74

(1)若在本次考試中,規(guī)定數(shù)學在80分以上(包括80分)且物理在75分以上(包括75分)的學生為理科小能手.從這6個學生中抽出2個學生,設表示理科小能手的人數(shù),求的分布列和數(shù)學期望;

(2)通過大量事實證明發(fā)現(xiàn),一個學生的數(shù)學成績和物理成績具有很強的線性相關關系,在上述表格是正確的前提下,用表示數(shù)學成績,用表示物理成績,求的回歸方程.

參考數(shù)據(jù)和公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點在直線上,且離心率.

(1)求該橢圓的方程;

(2)若是該橢圓上不同的兩點,且線段的中點在直線上,試證: 軸上存在定點,對于所有滿足條件的,恒有;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)若曲線在點處的切線與直線垂直,求的單調遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));

(2)若對任意恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),若函數(shù)內有兩個極值點,則實數(shù)的取值范圍是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求a的值,并證明R上的增函數(shù);

2)若關于t的不等式f(t22t)f(2t2k)0的解集非空,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目考生還須從物理,化學,生物,歷史,地理和政治六個科目中選取三個科目作為選考科目若一個學生從六個科目中選出了三個科目作為選考科目則稱該學生的選考方案確定;否則,稱該學生選考方案待確定例如學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定“物理、化學和生物”為其選考方案

某學校為了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學

生物

歷史

地理

政治

男生

選考方案確定的有8

8

8

4

2

1

1

選考方案待確定的有6

4

3

0

1

0

0

女生

選考方案確定的有10

8

9

6

3

3

1

選考方案待確定的有6

5

4

1

0

0

1

(Ⅰ)估計該學校高一年級選考方案確定的學生中選考生物的學生有多少人?

(Ⅱ)假設男生、女生選擇選考科目是相互獨立的從選考方案確定的8位男生中隨機選出1,從選考方案確定的10位女生中隨機選出1試求該男生和該女生的選考方案中都含有歷史學科的概率;

(Ⅲ)從選考方案確定的8名男生中隨機選出2設隨機變量,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形, 平面, , , 分別為, , 的中點.

1)求證: 平面;

2)求平面與平面所成銳二面角的大小;

3)在線段上是否存在一點,使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案