8.(1)已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{6}}{2}$,求cosα的值;
(2)已知sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,求cos($\frac{π}{4}$-θ).

分析 (1)采用兩邊平方,利用同角三角函數(shù)基本關(guān)系式,可得答案,注意α∈($\frac{π}{2}$,π);
(2)利用誘導(dǎo)公式即可求解.

解答 解:(1)由sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{6}}{2}$,
可得:(sin$\frac{α}{2}$+cos$\frac{α}{2}$)2=1+sinα=$\frac{3}{2}$,
∴sinα=$\frac{1}{2}$,
α∈($\frac{π}{2}$,π),
∴cosα=$\frac{\sqrt{3}}{2}$.
(2)由sin(θ+$\frac{π}{4}$)=cos[$\frac{π}{2}$-($\frac{π}{4}+θ$)]=$\frac{3}{5}$,
∴cos($\frac{π}{4}$-θ)=$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查了誘導(dǎo)公式及同角三角函數(shù)基本關(guān)系式,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)i為虛數(shù)單位,復(fù)數(shù)z1=1-i,z2=2i-1,則復(fù)數(shù)z1•z2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若復(fù)數(shù)z滿足|z|=2,則$|1+\sqrt{3}i+z|$的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知等差數(shù)列$\{a_n^{\;}\}$的前n項(xiàng)和為Sn,若a2+a8+a11=30,求S13=(  )
A.130B.65C.70D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓$\frac{x^2}{25}+\frac{y^2}{b^2}=1(b>0)$(0<b<5)的離心率$\frac{4}{5}$,則b的值等于( 。
A.1B.3C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知tanθ=2,則2sin2θ+sinθcosθ=( 。
A.2B.$\frac{5}{6}$C.-$\frac{3}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.袋中有20個(gè)大小相同的球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)(n=1,2,3,4),現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號(hào),
(1)求X的分布列,均值和方差;
(2)若Y=aX+b,E(Y)=1,D(Y)=11,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知不等式|x-a|+|2x-3|>$\frac{a^2}{2}$.
(1)已知a=2,求不等式的解集;
(2)已知不等式的解集為R,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)θ為銳角,若cos(θ-$\frac{3π}{4}$)=$\frac{3}{5}$,則sin(θ+$\frac{π}{4}$)=$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案