【題目】《九章算術(shù)》中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉騰.在如下圖所示的陽馬P-ABCD中,側(cè)棱底面ABCD,且,則當點E在下列四個位置:PA中點、PB中點、PC中點、PD中點時分別形成的四面體E-BCD中,鱉臑有( )

A.1B.2C.3D.4

【答案】C

【解析】

四個面都是直角三角形的四面體中必有棱與面垂直,由此可得.

結(jié)合圖形知陽馬P-ABCD只有四面體是鱉臑,

中點,如圖,與類比知的四個面都是直角三角形,是鱉臑,

中點,如圖,由于,∴,另外由與底面垂直得垂直,從而可得與平面垂直,即得,由線面垂直判定定理得平面,從而,那么的四個面都是直角三角形,此時是鱉臑,

同理中點時,也是鱉臑,

中點時,不是直角三角形,不是鱉臑,

因此鱉臑有3個.

故選:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】A是圓Ox2+y216上的任意一點,l是過點A且與x軸垂直的直線,B是直線lx軸的交點,點Q在直線l上,且滿足4|BQ|3|BA|.當點A在圓O上運動時,記點Q的軌跡為曲線C

1)求曲線C的方程;

2)已知直線ykx2k≠0)與曲線C交于M,N兩點,點M關(guān)于y軸的對稱點為M,設P0,﹣2),證明:直線MN過定點,并求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,設命題函數(shù)R上單調(diào)遞減,命題對任意實數(shù)x,不等式恒成立.

1)求非q為真時,實數(shù)c的取值范圍;

2)如果命題為真命題,且為假命題,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求的最大值;

(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的方程為,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.

(1)求點的軌跡方程;

(2)設直線與直線的夾角為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若處的切線方程為,求的值;

(2)若為區(qū)間上的任意實數(shù),且對任意,總有成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某城市有一塊半徑為(單位:百米)的圓形景觀,圓心為,有兩條與圓形景觀相切且互相垂直的道路.最初規(guī)劃在拐角處圖中陰影部分只有一塊綠化地,后來有眾多市民建議在綠化地上建一條小路,便于市民快捷地往返兩條道路.規(guī)劃部門采納了此建議,決定在綠化地中增建一條與圓相切的小道問:兩點應選在何處可使得小道最短?

查看答案和解析>>

同步練習冊答案