兩點等分單位圓時,有相應正確關系為;三點等分單位圓時,有相應正確關系為。由此可以推知:四點等分單位圓時的相應正確關系為
解析試題分析:用兩點等分單位圓時,關系為sinα+sin(π+α)=0,兩個角的正弦值之和為0,且第一個角為α,第二個角與第一個角的差為:(π+α)-α=π,
用三點等分單位圓時,關系為,此時三個角的正弦值之和為0,且第一個角為α,第二個角與第一個角的差與第三個角與第二個角的差相等,均為有()-()=()-α=.
依此類推,可得當四點等分單位圓時,為四個角正弦值之和為0,且第一個角為α,第二個角為
+α=+α,第三個角+α+=π+α,第四個角為π+α+=+α,
即其關系為。
考點:本題主要考查歸納推理。
點評:中檔題,解題的關鍵在于分析兩點等分單位圓與三點等分單位圓的正弦值的個數(shù)及角的關系,歸納得出關系式變化的規(guī)律。
科目:高中數(shù)學 來源: 題型:填空題
觀察下列算式:
13 =1,
23 =3+5,
33 = 7+9+11
43 ="13" +15 +17 +19 ,
… …
若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“2013”這個數(shù),則n= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推知正四面體的一些性質(zhì):?“各棱長相等,同一頂點上的兩條棱的夾角相等;?各個面都是全等的正三角形,相鄰兩個面所成的二面角相等;?各個面都是全等的正三角形,同一頂點上的任何兩條棱的夾角相等。你認為比較恰當?shù)氖?u>
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com